Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
GALÁŽ, Z. DROTÁR, P. MEKYSKA, J. GAZDA, M. MUCHA, J. ZVONČÁK, V. SMÉKAL, Z. FAÚNDEZ ZANUY, M. CASTRILLON, R. OROZCO-ARROYAVE, J. RAPCSAK, S. KINCSES, T. BRABENEC, L. REKTOROVÁ, I.
Originální název
Comparison of CNN-Learned vs. Handcrafted Features for Detection of Parkinson’s Disease Dysgraphia in a Multilingual Dataset
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Parkinson’s disease dysgraphia (PDYS), one of the earliest signs of Parkinson’s disease (PD), has been researched as a promising biomarker of PD and as the target of a noninvasive and inexpensive approach to monitoring the progress of the disease. However, although several approaches to supportive PDYS diagnosis have been proposed (mainly based on handcrafted features (HF) extracted from online handwriting or the utilization of deep neural networks), it remains unclear which approach provides the highest discrimination power and how these approaches can be transferred between different datasets and languages. This study aims to compare classification performance based on two types of features: features automatically extracted by a pretrained convolutional neural network (CNN) and HF designed by human experts. Both approaches are evaluated on a multilingual dataset collected from 143 PD patients and 151 healthy controls in the Czech Republic, United States, Colombia, and Hungary. The subjects performed the spiral drawing task (SDT; a language-independent task) and the sentence writing task (SWT; a language-dependent task). Models based on logistic regression and gradient boosting were trained in several scenarios, specifically single language (SL), leave one language out (LOLO), and all languages combined (ALC). We found that the HF slightly outperformed the CNN-extracted features in all considered evaluation scenarios for the SWT. In detail, the following balanced accuracy (BACC) scores were achieved: SL—0.65 (HF), 0.58 (CNN); LOLO—0.65 (HF), 0.57 (CNN); and ALC—0.69 (HF), 0.66 (CNN). However, in the case of the SDT, features extracted by a CNN provided competitive results: SL—0.66 (HF), 0.62 (CNN); LOLO—0.56 (HF), 0.54 (CNN); and ALC—0.60 (HF), 0.60 (CNN). In summary, regarding the SWT, the HF outperformed the CNN-extracted features over 6%(mean BACC of 0.66 for HF, and 0.60 for CNN). In the case of the SDT, both feature sets provided almost identical classification performance (mean BACC of 0.60 for HF, and 0.58 for CNN).
Klíčová slova
machine learning, deep learning, feature extraction, Parkinson’s disease dysgraphia, handwriting analysis
Autoři
GALÁŽ, Z.; DROTÁR, P.; MEKYSKA, J.; GAZDA, M.; MUCHA, J.; ZVONČÁK, V.; SMÉKAL, Z.; FAÚNDEZ ZANUY, M.; CASTRILLON, R.; OROZCO-ARROYAVE, J.; RAPCSAK, S.; KINCSES, T.; BRABENEC, L.; REKTOROVÁ, I.
Vydáno
30. 5. 2022
Nakladatel
Frontiers
ISSN
1662-5196
Periodikum
Frontiers in Neuroinformatics
Ročník
16
Číslo
1
Stát
Švýcarská konfederace
Strany od
Strany do
18
Strany počet
URL
https://www.frontiersin.org/articles/10.3389/fninf.2022.877139/full
Plný text v Digitální knihovně
http://hdl.handle.net/11012/204669
BibTex
@article{BUT177994, author="Zoltán {Galáž} and Peter {Drotár} and Jiří {Mekyska} and Matej {Gazda} and Ján {Mucha} and Vojtěch {Zvončák} and Zdeněk {Smékal} and Marcos {Faúndez Zanuy} and Reinel {Castrillon} and Juan Rafael {Orozco-Arroyave} and Steven Z. {Rapcsak} and Tamás {Kincses} and Luboš {Brabenec} and Irena {Rektorová}", title="Comparison of CNN-Learned vs. Handcrafted Features for Detection of Parkinson’s Disease Dysgraphia in a Multilingual Dataset", journal="Frontiers in Neuroinformatics", year="2022", volume="16", number="1", pages="1--18", doi="10.3389/fninf.2022.877139", issn="1662-5196", url="https://www.frontiersin.org/articles/10.3389/fninf.2022.877139/full" }