Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VESELÝ, J. OLIVOVÁ, J. GÖTTHANS, J. GÖTTHANS, T. RAIDA, Z.
Originální název
Classification of Microwave Planar Filters by Deep Learning
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Over the last few decades, deep learning has been considered to be powerful tool in the classification tasks, and has become popular in many applications due to its capabil-ity of processing huge amount of data. This paper presents approaches for image recognition. We have applied convolu-tional neural networks on microwave planar filters. The first task was filter topology classification, the second task was filter order estimation. For the task a dataset was generated. As presented in the results, the created and trained neural networks are very capable of solving the selected tasks.
Klíčová slova
Convolutional neural network; deep learning; band pass filter; low pass shunt filter; low pass stepped filter; order of filter
Autoři
VESELÝ, J.; OLIVOVÁ, J.; GÖTTHANS, J.; GÖTTHANS, T.; RAIDA, Z.
Vydáno
1. 4. 2022
Nakladatel
Czech Technical University in Prague
Místo
PRAHA
ISSN
1221-2512
Periodikum
Radioengineering
Ročník
31
Číslo
1
Stát
Česká republika
Strany od
69
Strany do
76
Strany počet
8
URL
https://www.radioeng.cz/fulltexts/2022/22_01_0069_0076.pdf
BibTex
@article{BUT178117, author="Jiří {Veselý} and Jana {Olivová} and Jakub {Götthans} and Tomáš {Götthans} and Zbyněk {Raida}", title="Classification of Microwave Planar Filters by Deep Learning", journal="Radioengineering", year="2022", volume="31", number="1", pages="69--76", doi="10.13164/re.2022.0069", issn="1221-2512", url="https://www.radioeng.cz/fulltexts/2022/22_01_0069_0076.pdf" }