Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ANDRIUSHCHENKO, R. ČEŠKA, M. JUNGES, S. KATOEN, J.
Originální název
Inductive Synthesis of Finite-State Controllers for POMDPs
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We present a novel learning framework to obtain finite-state controllers (FSCs) for partially observable Markov decision processes and illustrate its applicability for indefinite-horizon specifications. Our framework builds on oracle-guided inductive synthesis to explore a design space compactly representing available FSCs. The inductive synthesis approach consists of two stages: The outer stage determines the design space, i.e., the set of FSC candidates, while the inner stage efficiently explores the design space. This framework is easily generalisable and shows promising results when compared to existing approaches. Experiments indicate that our technique is (i) competitive to state-of-the-art belief-based approaches for indefinite-horizon properties, (ii) yields smaller FSCs than existing methods for several POMDP models, and (iii) naturally treats multi-objective specifications.
Klíčová slova
partially observable Markov decision processes, finite-state controllers, inductive synthesis, counter-examples, abstraction
Autoři
ANDRIUSHCHENKO, R.; ČEŠKA, M.; JUNGES, S.; KATOEN, J.
Vydáno
17. 6. 2022
Nakladatel
Proceedings of Machine Learning Research
Místo
Eindhoven
ISSN
2640-3498
Ročník
180
Číslo
Strany od
85
Strany do
95
Strany počet
11
BibTex
@inproceedings{BUT178215, author="ANDRIUSHCHENKO, R. and ČEŠKA, M. and JUNGES, S. and KATOEN, J.", title="Inductive Synthesis of Finite-State Controllers for POMDPs", booktitle="Conference on Uncertainty in Artificial Intelligence", year="2022", series="Proceedings of Machine Learning Research", volume="180", number="180", pages="85--95", publisher="Proceedings of Machine Learning Research", address="Eindhoven", issn="2640-3498" }