Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. KOROBKO, E.
Originální název
ON ANALOGUE OF BLOW-UP SOLUTIONS FOR A DISCRETE VARIANT OF SECOND–ORDER EMDEN–FOWLER DIFFERENTIAL EQUATION
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
A nonlinear second-order discrete equation of Emden--Fowler type $$ \Delta^2 v(k) = - k^s \left(\Delta v(k)\right)^3 $$ is studied for $k\to \infty$, where $s\not= 1$ is a real number, $v$ is an unknown function, $\Delta v(k) = v(k+1) - v(k)$, and $\Delta^2 v(k) = v(k+2) - 2v(k+1)+v(k)$. This equation is a discrete analogue of Emden-Fowler second-order differential equation $$ y''(x) = y^s(x), $$ having non-continuable blow--up solutions.
Klíčová slova
blow-up solution; Emden--Fowler equation; discrete equation
Autoři
DIBLÍK, J.; KOROBKO, E.
Vydáno
27. 6. 2022
Místo
Porto, Portugal
ISBN
978-989-53496-3-0
Kniha
International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts
Strany od
297
Strany do
300
Strany počet
4
BibTex
@inproceedings{BUT178416, author="Josef {Diblík} and Evgeniya {Korobko}", title="ON ANALOGUE OF BLOW-UP SOLUTIONS FOR A DISCRETE VARIANT OF SECOND–ORDER EMDEN–FOWLER DIFFERENTIAL EQUATION", booktitle="International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts", year="2022", pages="297--300", address="Porto, Portugal", doi="doi.org/10.34630/20734", isbn="978-989-53496-3-0" }