Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BARTOŇ, V. ŠKUTKOVÁ, H.
Originální název
Data Transformation for Clustering Utilization for Feature Detection in Mass Spectrometry
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Feature detection and peak detection are one of the first steps of mass spectrometry data processing. This data comes in large volumes; thus, the processing needs to be optimized, not overloaded. State-of-the-art clustering algorithms can not perform feature detection for several reasons. First issue is the volume of the data, second is the disparity of the sampling frequency in the MZ and RT axis. Here we show the data transformation to utilize the clustering algorithms without the need to redefine its kernel. Data are first pre-clustered to obtain regions that can be processed independently. Then we transform the data so that the numerical differences between consecutive points should be the same in both space axes. We applied a set of clustering algorithms for each region to find the features, and we compared the result with the Gridmass peak detector. These findings may facilitate better utilization of the 2D clustering method as feature detectors for mass spectra.
Klíčová slova
Clustering; Feature identification; Mass spectrometry
Autoři
BARTOŇ, V.; ŠKUTKOVÁ, H.
Vydáno
1. 7. 2022
Nakladatel
Springer
ISBN
978-3-031-07801-9
Kniha
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Edice
13347
Číslo edice
2
Strany od
288
Strany do
299
Strany počet
12
URL
https://link.springer.com/chapter/10.1007/978-3-031-07802-6_24
BibTex
@inproceedings{BUT178506, author="Vojtěch {Bartoň} and Helena {Vítková}", title="Data Transformation for Clustering Utilization for Feature Detection in Mass Spectrometry", booktitle="Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)", year="2022", series="13347", number="2", pages="288--299", publisher="Springer", doi="10.1007/978-3-031-07802-6\{_}24", isbn="978-3-031-07801-9", url="https://link.springer.com/chapter/10.1007/978-3-031-07802-6_24" }