Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ZÁVIŠKA, P. RAJMIC, P.
Originální název
Audio Declipping with (Weighted) Analysis Social Sparsity
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We develop the analysis (cosparse) variant of the popular audio declipping algorithm of Siedenburg et al. (2014). Furthermore, we extend both the old and the new variants by the possibility of weighting the time-frequency coefficients. We examine the audio reconstruction performance of several combinations of weights and shrinkage operators. The weights are shown to improve the reconstruction quality in some cases; however, the best scores achieved by the non-weighted methods are not surpassed with the help of weights. Yet, the analysis Empirical Wiener (EW) shrinkage was able to reach the quality of a computationally more expensive competitor, the Persistent Empirical Wiener (PEW). Moreover, the proposed analysis variant incorporating PEW slightly outperforms the synthesis counterpart in terms of an auditorily motivated metric.
Klíčová slova
audio declipping;cosparse;sparse;social sparsity;weighting
Autoři
ZÁVIŠKA, P.; RAJMIC, P.
Vydáno
18. 8. 2022
Nakladatel
IEEE
Místo
Prague, Czech republic
ISBN
978-1-6654-6948-7
Kniha
Proceedings of the 2022 45th International Conference on Telecommunications and Signal Processing (TSP)
Strany od
407
Strany do
412
Strany počet
6
URL
https://ieeexplore.ieee.org/document/9851269
BibTex
@inproceedings{BUT178520, author="Pavel {Záviška} and Pavel {Rajmic}", title="Audio Declipping with (Weighted) Analysis Social Sparsity", booktitle=" Proceedings of the 2022 45th International Conference on Telecommunications and Signal Processing (TSP)", year="2022", pages="407--412", publisher="IEEE", address="Prague, Czech republic", doi="10.1109/TSP55681.2022.9851269", isbn="978-1-6654-6948-7", url="https://ieeexplore.ieee.org/document/9851269" }