Detail publikace

Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation

WANG, Z. CHEN, J. KOCICH, R. TARDIF, A. DOLBNYA, I. P. KUNČICKÁ, L. MICHA, J.S. LIOGAS, K. MAGDYSYUK, O. A. SZURMAN, I. KORSUNSKY, A.M.

Originální název

Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

To explore an effective route of customizing the superelasticity (SE) of NiTi shape memory alloys via modifying the grain structure, binary Ni55Ti45 (wt) alloys were fabricated in as-cast, hot swaged, and hot-rolled conditions, presenting contrasting grain sizes and grain boundary types. In situ synchrotron X-ray Laue microdiffraction and in situ synchrotron X-ray powder diffraction techniques were employed to unravel the underlying grain structure mechanisms that cause the diversity of SE performance among the three materials. The evolution of lattice rotation, strain field, and phase transformation has been revealed at the micro-and mesoscale, and the effect of grain structure on SE performance has been quantified. It was found that (i) the Ni4Ti3 and NiTi2 precipitates are similar among the three materials in terms of morphology, size, and orientation distribution; (ii) phase transformation happens preferentially near high-angle grain boundary (HAGB) yet randomly in low-angle grain boundary (LAGB) structures; (iii) the smaller the grain size, the higher the phase transformation nucleation kinetics, and the lower the propagation kinetics; (iv) stress concentration happens near HAGBs, while no obvious stress concentration can be observed in the LAGB grain structure during loading; (v) the statistical distribution of strain in the three materials becomes asymmetric during loading; (vi) three grain lattice rotation modes are identified and termed for the first time, namely, multi-extension rotation, rigid rotation, and nondispersive rotation; and (vii) the texture evolution of B2 austenite and B19 ' martensite is not strongly dependent on the grain structure.

Klíčová slova

bespoke NiTi shape memory alloys; grain structure; multiscale; lattice rotation; phase transformation; Laue microdiffraction; powder diffraction

Autoři

WANG, Z.; CHEN, J.; KOCICH, R.; TARDIF, A.; DOLBNYA, I. P.; KUNČICKÁ, L.; MICHA, J.S.; LIOGAS, K.; MAGDYSYUK, O. A.; SZURMAN, I.; KORSUNSKY, A.M.

Vydáno

27. 6. 2022

Nakladatel

AMER CHEMICAL SOC

Místo

WASHINGTON

ISSN

1944-8244

Periodikum

ACS APPL MATER INTER

Ročník

14

Číslo

27

Stát

Spojené státy americké

Strany od

31396

Strany do

31410

Strany počet

15

URL

BibTex

@article{BUT178669,
  author="WANG, Z. and CHEN, J. and KOCICH, R. and TARDIF, A. and DOLBNYA, I. P. and KUNČICKÁ, L. and MICHA, J.S. and LIOGAS, K. and MAGDYSYUK, O. A. and SZURMAN, I. and KORSUNSKY, A.M.",
  title="Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation",
  journal="ACS APPL MATER INTER",
  year="2022",
  volume="14",
  number="27",
  pages="31396--31410",
  doi="10.1021/acsami.2c05939",
  issn="1944-8244",
  url="https://pubs.acs.org/doi/full/10.1021/acsami.2c05939"
}