Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
WANG, Z. CHEN, J. KOCICH, R. TARDIF, A. DOLBNYA, I. P. KUNČICKÁ, L. MICHA, J.S. LIOGAS, K. MAGDYSYUK, O. A. SZURMAN, I. KORSUNSKY, A.M.
Originální název
Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
To explore an effective route of customizing the superelasticity (SE) of NiTi shape memory alloys via modifying the grain structure, binary Ni55Ti45 (wt) alloys were fabricated in as-cast, hot swaged, and hot-rolled conditions, presenting contrasting grain sizes and grain boundary types. In situ synchrotron X-ray Laue microdiffraction and in situ synchrotron X-ray powder diffraction techniques were employed to unravel the underlying grain structure mechanisms that cause the diversity of SE performance among the three materials. The evolution of lattice rotation, strain field, and phase transformation has been revealed at the micro-and mesoscale, and the effect of grain structure on SE performance has been quantified. It was found that (i) the Ni4Ti3 and NiTi2 precipitates are similar among the three materials in terms of morphology, size, and orientation distribution; (ii) phase transformation happens preferentially near high-angle grain boundary (HAGB) yet randomly in low-angle grain boundary (LAGB) structures; (iii) the smaller the grain size, the higher the phase transformation nucleation kinetics, and the lower the propagation kinetics; (iv) stress concentration happens near HAGBs, while no obvious stress concentration can be observed in the LAGB grain structure during loading; (v) the statistical distribution of strain in the three materials becomes asymmetric during loading; (vi) three grain lattice rotation modes are identified and termed for the first time, namely, multi-extension rotation, rigid rotation, and nondispersive rotation; and (vii) the texture evolution of B2 austenite and B19 ' martensite is not strongly dependent on the grain structure.
Klíčová slova
bespoke NiTi shape memory alloys; grain structure; multiscale; lattice rotation; phase transformation; Laue microdiffraction; powder diffraction
Autoři
WANG, Z.; CHEN, J.; KOCICH, R.; TARDIF, A.; DOLBNYA, I. P.; KUNČICKÁ, L.; MICHA, J.S.; LIOGAS, K.; MAGDYSYUK, O. A.; SZURMAN, I.; KORSUNSKY, A.M.
Vydáno
27. 6. 2022
Nakladatel
AMER CHEMICAL SOC
Místo
WASHINGTON
ISSN
1944-8244
Periodikum
ACS APPL MATER INTER
Ročník
14
Číslo
27
Stát
Spojené státy americké
Strany od
31396
Strany do
31410
Strany počet
15
URL
https://pubs.acs.org/doi/full/10.1021/acsami.2c05939
BibTex
@article{BUT178669, author="WANG, Z. and CHEN, J. and KOCICH, R. and TARDIF, A. and DOLBNYA, I. P. and KUNČICKÁ, L. and MICHA, J.S. and LIOGAS, K. and MAGDYSYUK, O. A. and SZURMAN, I. and KORSUNSKY, A.M.", title="Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation", journal="ACS APPL MATER INTER", year="2022", volume="14", number="27", pages="31396--31410", doi="10.1021/acsami.2c05939", issn="1944-8244", url="https://pubs.acs.org/doi/full/10.1021/acsami.2c05939" }