Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MIKLÁNEK, Š. SCHIMMEL, J.
Originální název
Fast Temporal Convolutions for Real-Time Audio Signal Processing
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper introduces the possibilities of optimizing neural network convolutional layers for modeling nonlinear audio systems and effects. Enhanced methods for real-time dilated convolutions are presented to achieve faster signal processing times than in previous work. Due to the improved implementation of convolutional layers, a significant decrease in computational requirements was observed and validated on different configurations of single layers with dilated convolutions and WaveNet-style feedforward neural network models. In most cases, equivalent signal processing times were achieved to those using recurrent neural networks with Long Short-Term Memory units and Gated Recurrent Units, which are considered state-of-the-art in the field of black-box virtual analog modeling
Klíčová slova
convolutional neural networks; deep learning; virtual analog modelling; nonlinear systems
Autoři
MIKLÁNEK, Š.; SCHIMMEL, J.
Vydáno
2. 9. 2022
Nakladatel
DAFx
Místo
Vídeň
ISBN
978-3-200-08599-2
Kniha
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)
ISSN
2413-6689
Periodikum
Proceedings of the International Conference on Digital Audio Effects (DAFx)
Stát
Rakouská republika
Strany od
115
Strany do
121
Strany počet
7
BibTex
@inproceedings{BUT178795, author="Štěpán {Miklánek} and Jiří {Schimmel}", title="Fast Temporal Convolutions for Real-Time Audio Signal Processing", booktitle="Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)", year="2022", journal="Proceedings of the International Conference on Digital Audio Effects (DAFx)", pages="115--121", publisher="DAFx", address="Vídeň", isbn="978-3-200-08599-2", issn="2413-6689" }