Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HURTA, M. DRAHOŠOVÁ, M. MRÁZEK, V.
Originální název
Evolutionary Design of Reduced Precision Preprocessor for Levodopa-Induced Dyskinesia Classifier
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The aim of this work is to design a hardware-efficient implementation of data preprocessing in the task of levodopa-induced dyskinesia classification. In this task, there are three approaches implemented and compared: 1) evolution of magnitude approximation using Cartesian genetic programming, 2) design of preprocessing unit using two-population coevolution (2P-CoEA) of cartesian programs and fitness predictors, which are small subsets of training set, and 3) a design using three-population coevolution (3P-CoEA) combining compositional coevolution of preprocessor and classifier with coevolution of fitness predictors. Experimental results show that all of the three investigated approaches are capable of producing energy-saving solutions, suitable for implementation in hardware unit, with a quality comparable to baseline software implementation. Design of approximate magnitude leads to correctly working solutions, however, more energy-demanding than other investigated approaches. 3P-CoEA is capable of designing both preprocessor and classifier compositionally while achieving smaller solutions than the design of approximate magnitude. Presented 2P-CoEA results in the smallest and the most energy-efficient solutions along with producing a solution with significantly better classification quality for one part of test data in comparison with the software implementation.
Klíčová slova
Cartesian genetic programming, compositional coevolution, adaptive size fitness predictors, levodopa-induced dyskinesia, approximate magnitude, energy-efficient
Autoři
HURTA, M.; DRAHOŠOVÁ, M.; MRÁZEK, V.
Vydáno
10. 9. 2022
Nakladatel
Springer Nature Switzerland AG
Místo
Dortmund
ISBN
978-3-031-14713-5
Kniha
Parallel Problem Solving from Nature - PPSN XVII
Edice
Lecture Notes in Computer Science
Strany od
491
Strany do
504
Strany počet
14
URL
https://link.springer.com/chapter/10.1007/978-3-031-14714-2_34
BibTex
@inproceedings{BUT178852, author="Martin {Hurta} and Michaela {Drahošová} and Vojtěch {Mrázek}", title="Evolutionary Design of Reduced Precision Preprocessor for Levodopa-Induced Dyskinesia Classifier", booktitle="Parallel Problem Solving from Nature - PPSN XVII", year="2022", series="Lecture Notes in Computer Science", volume="13398", pages="491--504", publisher="Springer Nature Switzerland AG", address="Dortmund", doi="10.1007/978-3-031-14714-2\{_}34", isbn="978-3-031-14713-5", url="https://link.springer.com/chapter/10.1007/978-3-031-14714-2_34" }