Detail publikace

Evolutionary Design of Reduced Precision Preprocessor for Levodopa-Induced Dyskinesia Classifier

HURTA, M. DRAHOŠOVÁ, M. MRÁZEK, V.

Originální název

Evolutionary Design of Reduced Precision Preprocessor for Levodopa-Induced Dyskinesia Classifier

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The aim of this work is to design a hardware-efficient implementation of data preprocessing in the task of levodopa-induced dyskinesia classification. In this task, there are three approaches implemented and compared: 1) evolution of magnitude approximation using Cartesian genetic programming, 2) design of preprocessing unit using two-population coevolution (2P-CoEA) of cartesian programs and fitness predictors, which are small subsets of training set, and 3) a design using three-population coevolution (3P-CoEA) combining compositional coevolution of preprocessor and classifier with coevolution of fitness predictors. Experimental results show that all of the three investigated approaches are capable of producing energy-saving solutions, suitable for implementation in hardware unit, with a quality comparable to baseline software implementation. Design of approximate magnitude leads to correctly working solutions, however, more energy-demanding than other investigated approaches. 3P-CoEA is capable of designing both preprocessor and classifier compositionally while achieving smaller solutions than the design of approximate magnitude. Presented 2P-CoEA results in the smallest and the most energy-efficient solutions along with producing a solution with significantly better classification quality for one part of test data in comparison with the software implementation.

Klíčová slova

Cartesian genetic programming, compositional coevolution, adaptive size fitness predictors, levodopa-induced dyskinesia, approximate magnitude, energy-efficient

Autoři

HURTA, M.; DRAHOŠOVÁ, M.; MRÁZEK, V.

Vydáno

10. 9. 2022

Nakladatel

Springer Nature Switzerland AG

Místo

Dortmund

ISBN

978-3-031-14713-5

Kniha

Parallel Problem Solving from Nature - PPSN XVII

Edice

Lecture Notes in Computer Science

Strany od

491

Strany do

504

Strany počet

14

URL

BibTex

@inproceedings{BUT178852,
  author="Martin {Hurta} and Michaela {Drahošová} and Vojtěch {Mrázek}",
  title="Evolutionary Design of Reduced Precision Preprocessor for Levodopa-Induced Dyskinesia Classifier",
  booktitle="Parallel Problem Solving from Nature - PPSN XVII",
  year="2022",
  series="Lecture Notes in Computer Science",
  volume="13398",
  pages="491--504",
  publisher="Springer Nature Switzerland AG",
  address="Dortmund",
  doi="10.1007/978-3-031-14714-2\{_}34",
  isbn="978-3-031-14713-5",
  url="https://link.springer.com/chapter/10.1007/978-3-031-14714-2_34"
}