Detail publikace
Spelling-Aware Word-Based End-to-End ASR
EGOROVA, E. VYDANA, H. BURGET, L. ČERNOCKÝ, J.
Originální název
Spelling-Aware Word-Based End-to-End ASR
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We propose a new end-to-end architecture for automaticspeech recognition that expands the listen, attend andspell (LAS) paradigm. While the main word-predicting networkis trained to predict words, the secondary, speller network, isoptimized to predict word spellings from inner representationsof the main network (e.g. word embeddings or context vectorsfrom the attention module). We show that this joint trainingimproves the word error rate of a word-based system and enablessolving additional tasks, such as out-of-vocabulary word detectionand recovery. The tests are conducted on LibriSpeech datasetconsisting of 1000h of read speech.
Klíčová slova
end-to-end, ASR, OOV, Listen Attend and Spellarchitecture
Autoři
EGOROVA, E.; VYDANA, H.; BURGET, L.; ČERNOCKÝ, J.
Vydáno
19. 7. 2022
ISSN
1558-2361
Periodikum
IEEE SIGNAL PROCESSING LETTERS
Ročník
29
Číslo
29
Stát
Spojené státy americké
Strany od
1729
Strany do
1733
Strany počet
5
URL
BibTex
@article{BUT178877,
author="Ekaterina {Egorova} and Hari Krishna {Vydana} and Lukáš {Burget} and Jan {Černocký}",
title="Spelling-Aware Word-Based End-to-End ASR",
journal="IEEE SIGNAL PROCESSING LETTERS",
year="2022",
volume="29",
number="29",
pages="1729--1733",
doi="10.1109/LSP.2022.3192199",
issn="1558-2361",
url="https://ieeexplore.ieee.org/document/9833231"
}
Dokumenty