Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
EGOROVA, E. VYDANA, H. BURGET, L. ČERNOCKÝ, J.
Originální název
Spelling-Aware Word-Based End-to-End ASR
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We propose a new end-to-end architecture for automatic speech recognition that expands the listen, attend and spell (LAS) paradigm. While the main word-predicting network is trained to predict words, the secondary, speller network, is optimized to predict word spellings from inner representations of the main network (e.g. word embeddings or context vectors from the attention module). We show that this joint training improves the word error rate of a word-based system and enables solving additional tasks, such as out-of-vocabulary word detection and recovery. The tests are conducted on LibriSpeech dataset consisting of 1000h of read speech.
Klíčová slova
end-to-end, ASR, OOV, Listen Attend and Spell architecture
Autoři
EGOROVA, E.; VYDANA, H.; BURGET, L.; ČERNOCKÝ, J.
Vydáno
19. 7. 2022
ISSN
1558-2361
Periodikum
IEEE SIGNAL PROCESSING LETTERS
Ročník
29
Číslo
Stát
Spojené státy americké
Strany od
1729
Strany do
1733
Strany počet
5
URL
https://ieeexplore.ieee.org/document/9833231
BibTex
@article{BUT178877, author="Ekaterina {Egorova} and Hari Krishna {Vydana} and Lukáš {Burget} and Jan {Černocký}", title="Spelling-Aware Word-Based End-to-End ASR", journal="IEEE SIGNAL PROCESSING LETTERS", year="2022", volume="29", number="29", pages="1729--1733", doi="10.1109/LSP.2022.3192199", issn="1558-2361", url="https://ieeexplore.ieee.org/document/9833231" }