Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PIJÁČKOVÁ, K. GÖTTHANS, T. GÖTTHANS, J.
Originální název
Deep Learning Pipeline for Chromosome Segmentation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Chromosome segmentation is a challenging and time-consuming part of karyotyping and requires a high level of expertise. Computer segmentation algorithms still require the assistance of cytologists in more complicated cases with overlapping or touching chromosomes. Deep learning models have the potential to make the segmentation process completely automated, and their applications are currently actively re-searched. This paper proposes a segmentation pipeline by using deep learning models and traditional computer vision algorithms. This process can be split into four steps, in which we use U-Net architecture to remove any background noises of the metaphase image. Next, we use thresholding and skeletonization to extract and classify single chromosomes and chromosome clusters. As a final step, we use Mask R-CNN, for instance, segmentation on the overlapping and touching chromosomes, and apply test-time augmentation to improve the model's precision.
Klíčová slova
chromosome segmentation, karyotyping, deep learning, image processing, instance segmentation, test-time augmentation
Autoři
PIJÁČKOVÁ, K.; GÖTTHANS, T.; GÖTTHANS, J.
Vydáno
3. 5. 2022
Nakladatel
IEEE
ISBN
978-1-7281-8686-3
Kniha
2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA)
Strany od
197
Strany do
201
Strany počet
5
URL
https://ieeexplore.ieee.org/document/9764950
BibTex
@inproceedings{BUT178914, author="Kristýna {Pijáčková} and Tomáš {Götthans} and Jakub {Götthans}", title="Deep Learning Pipeline for Chromosome Segmentation", booktitle="2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA)", year="2022", pages="197--201", publisher="IEEE", doi="10.1109/RADIOELEKTRONIKA54537.2022.9764950", isbn="978-1-7281-8686-3", url="https://ieeexplore.ieee.org/document/9764950" }