Detail publikace
Connectivity with respect to α-discrete closure operators
ŠLAPAL, J.
Originální název
Connectivity with respect to α-discrete closure operators
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We discuss certain closure operators that generalize the Alexandroff topologies. Such a closure operator is defined for every ordinal α > 0 in such a way that the closure of a set A is given by closures of certain α-indexed sequences formed by points of A. It is shown that connectivity with respect to such a closure operator can be viewed as a special type of path connectivity. This makes it possible to apply the operators in solving problems based on employing a convenient connectivity such as problems of digital image processing. One such application is presented providing a digital analogue of the Jordan curve theorem.
Klíčová slova
closure operator, ordinal (number), ordinal-indexed sequence, connectivity, digital Jordan curve
Autoři
ŠLAPAL, J.
Vydáno
1. 9. 2022
Nakladatel
De Gruyter
Místo
Warsaw, Poland
ISSN
2391-5455
Periodikum
Open Mathematics
Ročník
2022
Číslo
20
Stát
Polská republika
Strany od
682
Strany do
688
Strany počet
7
URL
BibTex
@article{BUT179022,
author="Josef {Šlapal}",
title="Connectivity with respect to α-discrete closure operators",
journal="Open Mathematics",
year="2022",
volume="2022",
number="20",
pages="682--688",
doi="10.1515/math-2022-0046",
issn="2391-5455",
url="https://www.degruyter.com/document/doi/10.1515/math-2022-0046/html"
}