Detail publikace

Connectivity with respect to α-discrete closure operators

ŠLAPAL, J.

Originální název

Connectivity with respect to α-discrete closure operators

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We discuss certain closure operators that generalize the Alexandroff topologies. Such a closure operator is defined for every ordinal α > 0 in such a way that the closure of a set A is given by closures of certain α-indexed sequences formed by points of A. It is shown that connectivity with respect to such a closure operator can be viewed as a special type of path connectivity. This makes it possible to apply the operators in solving problems based on employing a convenient connectivity such as problems of digital image processing. One such application is presented providing a digital analogue of the Jordan curve theorem.

Klíčová slova

closure operator, ordinal (number), ordinal-indexed sequence, connectivity, digital Jordan curve

Autoři

ŠLAPAL, J.

Vydáno

1. 9. 2022

Nakladatel

De Gruyter

Místo

Warsaw, Poland

ISSN

2391-5455

Periodikum

Open Mathematics

Ročník

2022

Číslo

20

Stát

Polská republika

Strany od

682

Strany do

688

Strany počet

7

URL

BibTex

@article{BUT179022,
  author="Josef {Šlapal}",
  title="Connectivity with respect to α-discrete closure operators",
  journal="Open Mathematics",
  year="2022",
  volume="2022",
  number="20",
  pages="682--688",
  doi="10.1515/math-2022-0046",
  issn="2391-5455",
  url="https://www.degruyter.com/document/doi/10.1515/math-2022-0046/html"
}