Detail publikace

Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data

ŠÍN, P. HOKYNKOVÁ, A. NOVÁKOVÁ, M. POKORNÁ, A. KRČ, R. PODROUŽEK, J.

Originální název

Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Increasingly available open medical and health datasets encourage data-driven research with a promise of improving patient care through knowledge discovery and algorithm development. Among efficient approaches to such high-dimensional problems are a number of machine learning methods, which are applied in this paper to pressure ulcer prediction in modular critical care data. An inherent property of many health-related datasets is a high number of irregularly sampled time-variant and scarcely populated features, often exceeding the number of observations. Although machine learning methods are known to work well under such circumstances, many choices regarding model and data processing exist. In particular, this paper address both theoretical and practical aspects related to the application of six classification models to pressure ulcers, while utilizing one of the largest available Medical Information Mart for Intensive Care (MIMIC-IV) databases. Random forest, with an accuracy of 96%, is the best-performing approach among the considered machine learning algorithms.

Klíčová slova

pressure ulcer; pressure injury; machine learning; MIMIC database; MIMIC-IV; open data; artificial neural network; random forest

Autoři

ŠÍN, P.; HOKYNKOVÁ, A.; NOVÁKOVÁ, M.; POKORNÁ, A.; KRČ, R.; PODROUŽEK, J.

Vydáno

30. 3. 2022

Nakladatel

MDPI

Místo

Basel, Switzerland

ISSN

2075-4418

Periodikum

Diagnostics

Ročník

12

Číslo

4

Stát

Švýcarská konfederace

Strany od

1

Strany do

13

Strany počet

13

URL

BibTex

@article{BUT179438,
  author="ŠÍN, P. and HOKYNKOVÁ, A. and NOVÁKOVÁ, M. and POKORNÁ, A. and KRČ, R. and PODROUŽEK, J.",
  title="Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data",
  journal="Diagnostics",
  year="2022",
  volume="12",
  number="4",
  pages="1--13",
  doi="10.3390/diagnostics12040850",
  issn="2075-4418",
  url="https://www.mdpi.com/2075-4418/12/4/850/pdf"
}