Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PAVLÍK, P. ROZINAJOVÁ, V. BOU EZZEDDINE, A.
Originální název
Radar-Based Volumetric Precipitation Nowcasting: A 3D Convolutional Neural Network with U-Net Architecture
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In recent years like in many other domains deep learning models have found their place in the domain of precipitation nowcasting. Many of these models are based on the U-Net architecture, which was originally developed for biomedical segmentation, but is also useful for the generation of short-term forecasts and therefore applicable in the weather nowcasting domain. The existing U-Net-based models use sequential radar data mapped into a 2-dimensional Cartesian grid as input and output. We propose to incorporate a third - vertical - dimension to better predict precipitation phenomena such as convective rainfall and present our results here. We compare the nowcasting performance of two comparable U-Net models trained on two-dimensional and three-dimensional radar observation data. We show that using volumetric data results in a small, but significant reduction in prediction error.
Klíčová slova
precipitation nowcasting, radar imaging, U-Net
Autoři
PAVLÍK, P.; ROZINAJOVÁ, V.; BOU EZZEDDINE, A.
Vydáno
25. 7. 2022
Nakladatel
CEUR-WS.org
Místo
Vienna
ISSN
1613-0073
Periodikum
CEUR Workshop Proceedings
Ročník
3207
Číslo
2022
Stát
Spolková republika Německo
Strany od
65
Strany do
72
Strany počet
7
URL
http://ceur-ws.org/Vol-3207/paper10.pdf
BibTex
@inproceedings{BUT179604, author="Peter {Pavlík} and Věra {Rozinajová} and Anna {Bou Ezzeddine}", title="Radar-Based Volumetric Precipitation Nowcasting: A 3D Convolutional Neural Network with U-Net Architecture", booktitle="Proceedings of the Second Workshop on Complex Data Challenges in Earth Observation (CDCEO 2022)", year="2022", journal="CEUR Workshop Proceedings", volume="3207", number="2022", pages="65--72", publisher="CEUR-WS.org", address="Vienna", issn="1613-0073", url="http://ceur-ws.org/Vol-3207/paper10.pdf" }