Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VRÁBEL, J. KÉPEŠ, E. NEDĚLNÍK, P. POŘÍZKA, P. KAISER, J.
Originální název
Spectra transfer between distinct LIBS systems using shared standards and machine learning
Typ
abstrakt
Jazyk
angličtina
Originální abstrakt
Mutual incompatibility of distinct spectroscopic systems is among the most limiting factors in Laser-Induced Breakdown Spectroscopy (LIBS). This problem is ruling out the possibility of shared libraries of standards and trustworthy inter-laboratory comparison. However, the general solution to this problem is almost impossible due to the change of physical conditions during experiments and widely varying analytical performances of spectrometers. We demonstrate the possibility of spectra transfer for a special case, where both systems measure simultaneously from the same plasma. Extensive datasets measured as hyperspectral maps of heterogeneous specimens are used for the training of machine learning (ML) models that are able to transfer spectra between systems. We use a latent representation (obtained from an autoencoder) of the data measured on the master system, where data from the subordinate system are mapped by a fully-connected artificial neural network (ANN) to corresponding locations (see Fig. 1).
Klíčová slova
transfer library; LIBS; machine learning; transfer learning; spectroscopic data
Autoři
VRÁBEL, J.; KÉPEŠ, E.; NEDĚLNÍK, P.; POŘÍZKA, P.; KAISER, J.
Vydáno
5. 9. 2022
URL
https://libs2022.com/wp-content/uploads/2022/09/BookAbstracts1-9-22_pagenumber.pdf
BibTex
@misc{BUT180062, author="Jakub {Vrábel} and Erik {Képeš} and Pavel {Nedělník} and Pavel {Pořízka} and Jozef {Kaiser}", title="Spectra transfer between distinct LIBS systems using shared standards and machine learning", year="2022", url="https://libs2022.com/wp-content/uploads/2022/09/BookAbstracts1-9-22_pagenumber.pdf", note="abstract" }