Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PECHER, B. SRBA, I. BIELIKOVÁ, M.
Originální název
Transferability and Stability of Learning With Limited Labelled Data in Multilingual Text Domain
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Using the learning with limited labelled data approaches to improve performance in multilingual domains, where small amount of labels are spread spread across languages and tasks, requires knowing the transferability of these approaches to new datasets and tasks. However, the lower data availability makes the learning with limited labelled data unstable, resulting in randomness invalidating the investigation, when it is not taken into consideration. Nevertheless, previous studies that perform benchmarking and investigation of such approaches mostly ignore the effects of randomness. In our work, we want to remedy this by investigating the stability and transferability, for effective use in the multilingual domains with specific characteristics.
Klíčová slova
Artificial intelligence, Classification (of information), Text processing
Autoři
PECHER, B.; SRBA, I.; BIELIKOVÁ, M.
Vydáno
28. 7. 2022
Nakladatel
International Joint Conferences on Artificial Intelligence
Místo
Vienna
ISBN
978-1-956792-00-3
Kniha
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Doctoral Consortium
Strany od
5869
Strany do
5870
Strany počet
2
URL
https://www.ijcai.org/proceedings/2022/837
BibTex
@inproceedings{BUT180394, author="PECHER, B. and SRBA, I. and BIELIKOVÁ, M.", title="Transferability and Stability of Learning With Limited Labelled Data in Multilingual Text Domain", booktitle="Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Doctoral Consortium", year="2022", pages="5869--5870", publisher="International Joint Conferences on Artificial Intelligence", address="Vienna", doi="10.24963/ijcai.2022/837", isbn="978-1-956792-00-3", url="https://www.ijcai.org/proceedings/2022/837" }