Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MOKRÝ, O. MAGRON, P. OBERLIN, T. FÉVOTTE, C.
Originální název
Algorithms for audio inpainting based on probabilistic nonnegative matrix factorization
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Audio inpainting, i.e., the task of restoring missing or occluded audio signal samples, usually relies on sparse representations or autoregressive modeling. In this paper, we propose to structure the spectrogram with nonnegative matrix factorization (NMF) in a probabilistic framework. First, we treat the missing samples as latent variables, and derive two expectation–maximization algorithms for estimating the parameters of the model, depending on whether we formulate the problem in the time- or time-frequency domain. Then, we treat the missing samples as parameters, and we address this novel problem by deriving an alternating minimization scheme. We assess the potential of these algorithms for the task of restoring short- to middle-length gaps in music signals. Experiments reveal great convergence properties of the proposed methods, as well as competitive performance when compared to state-of-the-art audio inpainting techniques.
Klíčová slova
Alternating minimization; Audio inpainting; Expectation–maximization; Nonnegative matrix factorization
Autoři
MOKRÝ, O.; MAGRON, P.; OBERLIN, T.; FÉVOTTE, C.
Vydáno
24. 12. 2022
Nakladatel
Elsevier
Místo
Amsterdam, Nizozemsko
ISSN
1872-7557
Periodikum
SIGNAL PROCESSING
Číslo
206
Stát
Nizozemsko
Strany od
1
Strany do
10
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0165168422004443
BibTex
@article{BUT180524, author="Ondřej {Mokrý} and Paul {Magron} and Thomas {Oberlin} and Cédric {Févotte}", title="Algorithms for audio inpainting based on probabilistic nonnegative matrix factorization", journal="SIGNAL PROCESSING", year="2022", number="206", pages="1--10", doi="10.1016/j.sigpro.2022.108905", issn="1872-7557", url="https://www.sciencedirect.com/science/article/pii/S0165168422004443" }