Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VALA, J. JAROŠOVÁ, P.
Originální název
On computational stability of explicit schemes in nonlinear engineering dynamics
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Physical analysis of problems of engineering dynamics leads typically to hyperbolic systems of partial differential equations of evolution of 2nd order with some nonlinear terms, supplied with Dirichlet and Neumann boundary conditions together with some interface ones and with Cauchy initial conditions. Their numerical treatment needs coupling the finite element (or similar) method with the method of discretization in time. The preference of distributed and parallel computations for large problems, e. g. of multiple contacts of moving deformable bodies, stimulates the analysis of convergence and stability properties of explicit integration schemes, as simple, eective and robust as possible. This paper demonstrates such research direction, significant for practical calculations, on the conditional stability of a model simple explicit algorithm, motivated by the central difference method, implemented ad hoc e. g. in the LS-DYNA software package.
Klíčová slova
finite difference method; computational dynamics
Autoři
VALA, J.; JAROŠOVÁ, P.
Vydáno
1. 9. 2023
Nakladatel
American Institute of Physics
Místo
Melville (USA)
ISBN
978-0-7354-4182-8
Kniha
ICNAAM 2021 Proceedings
Číslo edice
1
Strany od
370004-1
Strany do
370004-4
Strany počet
4
URL
https://pubs.aip.org/aip/acp/article/2849/1/370004/2909204/