Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOLAŘÍK, M. JONÁK, M. PŘINOSIL, J. KRAJSA, O. BURGET, R. GAJDACZEK, T.
Originální název
One-Class Learning Weed Plants Detection on Multispectral Images
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Modern precision agriculture methods focus on efficient crop care procedures with targeted chemical applications. As current computer vision algorithms allow us to distinguish different plant species, spot-spraying systems for precise herbicide application only on weed plants are being developed and used in praxis. Many such systems rely on deep learning algorithms trained on large datasets containing all possible plant species. While the crop plants keep the same visual characteristics all around the world, the species composition of weed plants can differ significantly, leading to lower detection accuracy for weed species that are not represented in the training dataset. In this work, we apply the PatchCore and PaDiM, two state-of-the-art anomaly detection algorithms, to a multispectral dataset of corn plant images in a one-class learning paradigm. The best performing algorithm achieved AUROC 94.2 despite the high visual heterogeneity and scarcity of the input data. Our results suggest it is possible to train weed-detection algorithms on a limited dataset in a one-class learning setting to transform the species classification into an anomaly detection problem.
Klíčová slova
One-Class Learning; Anomaly detection; Precision agriculture; Multispectral imaging; Deep learning; Computer vision
Autoři
KOLAŘÍK, M.; JONÁK, M.; PŘINOSIL, J.; KRAJSA, O.; BURGET, R.; GAJDACZEK, T.
Vydáno
11. 10. 2022
Nakladatel
IEEE
Místo
Valencia, Spain
ISBN
979-8-3503-9866-3
Kniha
2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISSN
2157-023X
Periodikum
International Congress on Ultra Modern Telecommunications and Control Systems and Workshops
Číslo
Stát
neuvedeno
Strany od
76
Strany do
79
Strany počet
4
URL
https://ieeexplore.ieee.org/document/9943391
BibTex
@inproceedings{BUT180850, author="Martin {Kolařík} and Martin {Jonák} and Jiří {Přinosil} and Ondřej {Krajsa} and Radim {Burget} and Tomáš {Gajdaczek}", title="One-Class Learning Weed Plants Detection on Multispectral Images", booktitle="2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)", year="2022", journal="International Congress on Ultra Modern Telecommunications and Control Systems and Workshops", number="2157-023X", pages="76--79", publisher="IEEE", address="Valencia, Spain", doi="10.1109/ICUMT57764.2022.9943391", isbn="979-8-3503-9866-3", issn="2157-023X", url="https://ieeexplore.ieee.org/document/9943391" }