Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LIEBERMAN, M. VASEY, S. ROSICKÝ, J.
Originální název
Hilbert spaces and C*-algebras are not finitely concrete
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston. (C) 2022 Elsevier B.V. All rights reserved.
Klíčová slova
Hilbert space; C?-algebra; Faithful functor preserving directed colimits
Autoři
LIEBERMAN, M.; VASEY, S.; ROSICKÝ, J.
Vydáno
1. 4. 2023
Nakladatel
ELSEVIER
Místo
AMSTERDAM
ISSN
0022-4049
Periodikum
JOURNAL OF PURE AND APPLIED ALGEBRA
Ročník
227
Číslo
4
Stát
Nizozemsko
Strany počet
9
URL
http://www.sciencedirect.com/science/article/pii/S0022404922002432
BibTex
@article{BUT181494, author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický}", title="Hilbert spaces and C*-algebras are not finitely concrete", journal="JOURNAL OF PURE AND APPLIED ALGEBRA", year="2023", volume="227", number="4", pages="9", doi="10.1016/j.jpaa.2022.107245", issn="0022-4049", url="http://www.sciencedirect.com/science/article/pii/S0022404922002432" }