Detail produktu

On the edge implementation of quantized ANN for interturn short-circuit diagnostics

KOZOVSKÝ, M. BLAHA, P. VÁCLAVEK, P.

Typ produktu

software

Abstrakt

The prepared software package contains a set of scripts for the conversion of neural networks for inter-turn short-circuit detection from floating point arithmetic to integer arithmetic suitable for implementation in tensor processing units - TPUs. A trained neural network and a representative dataset are needed to use the quantization process. The resulting neural network contains only integer types and can be easily implemented in low-cost microcontrollers without float processing units FPU or into TPU platforms. The size of the neural network is reduced to approximately one-quarter of the original size with just a minimum reduction in classification accuracy. The resulting quantized networks were tested on a test system for the analysis of inter-turn short-circuits in a multiphase PMS motor with a Nerve Blue platform equipped with an additional Coral TPU accelerator.

Klíčová slova

neural network, quantisation, inter-turn short circuit

Datum vzniku

20. 10. 2022

Umístění

CEITEC Admas, 651/139, Purkyňova, 612 00 Brno

Možnosti využití

K využití výsledku jiným subjektem je vždy nutné nabytí licence

Licenční poplatek

Poskytovatel licence na výsledek požaduje licenční poplatek

www