Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KARAFIÁT, M., BURGET, L., ČERNOCKÝ, J.
Originální název
Using Smoothed Heteroscedastic Linear Discriminant Analysis in Large Vocabulary Continuous Speech Recognition System
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In the state-of-the-art speech recognition systems, Heteroscedastic Linear Discriminant Analysis (HLDA) is becoming popular technique allowing for feature decorrelation and dimensionality reduction. However, HLDA relies on statistics, which may not be reliably estimated when only limited amount of training data is available. Recently, Smoothed HLDA (SHLDA) was proposed as a robust modification of HLDA. Previously, SHLDA was successfully used for feature combination in small vocabulary recognition experiments. In this work, we verify that SHLDA can be advantageously used also for Large Vocabulary Continuous Speech Recognition.
Klíčová slova
speech recognition, LVCSR, HLDA, feature transform, dimensionality reduction
Autoři
Rok RIV
2005
Vydáno
20. 9. 2005
Místo
Edinbourgh
Strany od
1
Strany do
8
Strany počet
URL
https://www.fit.vutbr.cz/~karafiat/publi/2005/karafiat_mlmi2005.pdf
BibTex
@inproceedings{BUT18264, author="Martin {Karafiát} and Lukáš {Burget} and Jan {Černocký}", title="Using Smoothed Heteroscedastic Linear Discriminant Analysis in Large Vocabulary Continuous Speech Recognition System", booktitle="2nd Joint Workshop on Multimodal Interaction and Related Machine Learning Algorithms", year="2005", pages="8", address="Edinbourgh", url="https://www.fit.vutbr.cz/~karafiat/publi/2005/karafiat_mlmi2005.pdf" }