Detail publikace

Using Smoothed Heteroscedastic Linear Discriminant Analysis in Large Vocabulary Continuous Speech Recognition System

KARAFIÁT, M. BURGET, L. ČERNOCKÝ, J.

Originální název

Using Smoothed Heteroscedastic Linear Discriminant Analysis in Large Vocabulary Continuous Speech Recognition System

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

In this work, we verify that SHLDA can be advantageously used also for Large Vocabulary Continuous Speech Recognition.

Klíčová slova

speech recognition, LVCSR, HLDA, feature transform, dimensionality reduction

Autoři

KARAFIÁT, M.; BURGET, L.; ČERNOCKÝ, J.

Rok RIV

2005

Vydáno

13. 7. 2005

Nakladatel

University of Edinburgh

Místo

Edinbourgh, Scotland

Strany od

1

Strany do

8

Strany počet

8

URL

BibTex

@inproceedings{BUT18264,
  author="Martin {Karafiát} and Lukáš {Burget} and Jan {Černocký}",
  title="Using Smoothed Heteroscedastic Linear Discriminant Analysis in Large Vocabulary Continuous Speech Recognition System",
  booktitle="2nd Joint Workshop on Multimodal Interaction and Related Machine Learning Algorithms",
  year="2005",
  series="tento článek nebyl zařazen mezi Revised Selected Papers, nevyšel v LNCS 3869",
  pages="1--8",
  publisher="University of Edinburgh",
  address="Edinbourgh, Scotland",
  url="https://www.fit.vutbr.cz/~karafiat/publi/2005/karafiat_mlmi2005.pdf"
}