Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
JURÁNEK, R. VÝRAVSKÝ, J. KOLÁŘ, M. MOTL, D. ZEMČÍK, P.
Originální název
Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We introduce a novel method for graph-based segmentation of spectral images obtained using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive X-ray spectroscopy (EDS) detector. The method exploits deep learning along with fusion of rasterized electron microscopy images with sparse EDS samples to obtain accurate mineralogy segmentation with high efficiency. Improvements over previous methods are with respect to the goal of an improved quantitative and qualitative assessment of segmentation, so that volumetric composition is indirectly addressed. We describe the principles of the novel method, show experimental results on real samples and demonstrate its advantages in comparison to the state of the art. The new method performs unsupervised clustering on sparsely measured EDS spectra, allowing for classification of unseen mineralogical compounds. Then, the processed spectra are combined with single channel SEM measurements through an optimized lattice, where a Markov Field is used to perform spatial segmentation in image. The benefit of this material-agnostic method is that clusters can then be (separately) classified, analyzed, and small grains with distinct EDS measurements are more accurately separated than in previous methods. These improved results are evaluated quantitatively on ground-truth electron microscope measurements with dense high-count EDS data, as well as visually through analysis by a mineralogist.
Klíčová slova
Segmentation, Deep learning, EDS spectra, Automated mineralogy
Autoři
JURÁNEK, R.; VÝRAVSKÝ, J.; KOLÁŘ, M.; MOTL, D.; ZEMČÍK, P.
Vydáno
1. 8. 2022
ISSN
0098-3004
Periodikum
COMPUTERS & GEOSCIENCES
Ročník
165
Číslo
8
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1
Strany do
2
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0098300422000668
BibTex
@article{BUT182942, author="JURÁNEK, R. and VÝRAVSKÝ, J. and KOLÁŘ, M. and MOTL, D. and ZEMČÍK, P.", title="Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis", journal="COMPUTERS & GEOSCIENCES", year="2022", volume="165", number="8", pages="1--2", doi="10.1016/j.cageo.2022.105109", issn="0098-3004", url="https://www.sciencedirect.com/science/article/pii/S0098300422000668" }