Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČEJKA, T. HYNEK, K. SOUKUP, D. TISOVČÍK, P.
Originální název
Towards Evaluating Quality of Datasets for Network Traffic Domain
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with the quality of network traffic datasets created to train and validate machine learning classification and detection methods. Naturally, there is a long epoch of research targeted at data quality; however, it is focused mainly on data consistency, validity, precision, and other metrics, which are insufficient for network traffic use-cases. The rise of Machine learning usage in network monitoring applications requires a new methodology for evaluation datasets. There is a need to evaluate and compare traffic samples captured at different conditions and decide the usability of the already captured and annotated data. This paper aims to explain a use case of dataset creation, propose definitions regarding the quality of the network traffic datasets, and finally, describe a framework for datasets analysis.
Klíčová slova
Dataset; Data Quality; Network traffic analysis
Autoři
ČEJKA, T.; HYNEK, K.; SOUKUP, D.; TISOVČÍK, P.
Vydáno
20. 12. 2021
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Izmir
ISBN
978-3-903176-36-2
Kniha
Proceedings of the 17th International Conference on Network Service Management (CNSM 2021)
Strany od
264
Strany do
268
Strany počet
5
URL
https://ieeexplore.ieee.org/abstract/document/9615601
BibTex
@inproceedings{BUT182953, author="Tomáš {Čejka} and Karel {Hynek} and Dominik {Soukup} and Peter {Tisovčík}", title="Towards Evaluating Quality of Datasets for Network Traffic Domain", booktitle="Proceedings of the 17th International Conference on Network Service Management (CNSM 2021)", year="2021", pages="264--268", publisher="Institute of Electrical and Electronics Engineers", address="Izmir", doi="10.23919/CNSM52442.2021.9615601", isbn="978-3-903176-36-2", url="https://ieeexplore.ieee.org/abstract/document/9615601" }