Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FANG, Y. RADULESCU, V. ZHANG, C.
Originální název
Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We establish the equivalence between weak and viscosity solutions to the nonhomogeneous double phase equation with lower-order term - div(|Du|(p-2)Du+a(x)|Du|(q-2)Du)= f (x, u, Du), 1 < p <= q < infinity, a(x) >= 0. We find some appropriate hypotheses on the coefficient a(x), the exponents p, q and the nonlinear term f to show that the viscosity solutions with a priori Lipschitz continuity are weak solutions of such equation by virtue of the inf(sup)-convolution techniques. The reverse implication can be concluded through comparison principles. Moreover, we verify that the bounded viscosity solutions are exactly Lipschitz continuous, which is also of independent interest.
Klíčová slova
regularity; functionals
Autoři
FANG, Y.; RADULESCU, V.; ZHANG, C.
Vydáno
15. 1. 2024
Nakladatel
Springer Nature
ISSN
0025-5831
Periodikum
MATHEMATISCHE ANNALEN
Ročník
388
Číslo
3
Stát
Spolková republika Německo
Strany od
2519
Strany do
2559
Strany počet
41
URL
https://www.webofscience.com/wos/woscc/full-record/WOS:000940224800001
Plný text v Digitální knihovně
http://hdl.handle.net/11012/244281
BibTex
@article{BUT183167, author="Yuzhou {Fang} and Vicentiu {Radulescu} and Chao {Zhang}", title="Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation", journal="MATHEMATISCHE ANNALEN", year="2024", volume="388", number="3", pages="41", doi="10.1007/s00208-023-02593-y", issn="0025-5831", url="https://www.webofscience.com/wos/woscc/full-record/WOS:000940224800001" }