Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DOUPOVEC, M. KUREK, J. MIKULSKI, W.
Originální název
On Weil like functors on flag vector bundles with given length
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Let kappa >= 2 be a fixed natural number. The complete description is given of the product preserving gauge bundle functors F on the category F kappa VB of flag vector bundles K = (K; K1, ... , K kappa) of length kappa in terms of the systems I = (I1, ... , I kappa-1) of A-module homomorphisms Ii : Vi+1 -> Vi for Weil algebras A and finite dimensional (over R) A-modules V1, ... , V kappa. The so called iteration problem is investigated. The natural affinors on FK are classified. The gauge-natural operators C lifting kappa-flag-linear (i.e. with the flow in F kappa VB) vector fields X on K to vector fields C(X) on FK are completely described. The concept of the complete lift F phi of a kappa-flag-linear semi-basic tangent valued p-form phi on K is introduced. That the complete lift F phi preserves the Fro center dot licher-Nijenhuis bracket is deduced. The obtained results are applied to study prolongation and torsion of kappa-flag-linear connections.
Klíčová slova
product preserving gauge bundle functor;natural transformation;Weil algebra;flag-linear vector bundle;flag-linear semi-basic tangent valued p-form;complete lifting;Fro?licher-Nijenhuis bracket;flag-linear connection
Autoři
DOUPOVEC, M.; KUREK, J.; MIKULSKI, W.
Vydáno
31. 3. 2023
Nakladatel
Faculty of Sciences and Mathematics, University of Niš, Serbia
Místo
Serbia
ISSN
0354-5180
Periodikum
FILOMAT
Ročník
37
Číslo
9
Stát
Srbská republika
Strany od
2755
Strany do
2771
Strany počet
17
URL
https://www.pmf.ni.ac.rs/filomat-content/2023/37-9/37-9-9-18390.pdf
BibTex
@article{BUT183286, author="Miroslav {Doupovec} and Jan {Kurek} and Wlodzimierz {Mikulski}", title="On Weil like functors on flag vector bundles with given length", journal="FILOMAT", year="2023", volume="37", number="9", pages="2755--2771", doi="10.2298/FIL2309755D", issn="0354-5180", url="https://www.pmf.ni.ac.rs/filomat-content/2023/37-9/37-9-9-18390.pdf" }