Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LIU, Z. RADULESCU, V. ZHANG, J.
Originální název
A planar Schrodinger-Newton system with Trudinger-Moser critical growth
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we focus on the existence of positive solutions to the following planar Schrodinger-Newton system with general critical exponential growth $-\Delta u + u + \phi u = f (u) in R^2, \Delta \phi = u^2 in R^2 $, where $f$ is an element of $ C^1( R, R)$. We apply a variational approach developed in [36] to study the above problem in the Sobolev space $H^1(R^2)$. The analysis developed in this paper also allows to investigate the relation between a Riesz-type of Schrodinger-Newton systems and a logarithmic-type of Schrodinger-Poisson systems. Furthermore, this approach can overcome some difficulties resulting from either the nonlocal term with sign-changing and unbounded logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of $ f(t)/t(3)$. We emphasize that it seems much difficult to use the variational framework developed in the existed literature to study the above problem.
Klíčová slova
CONCENTRATION-COMPACTNESS PRINCIPLE; POISSON SYSTEM;EXISTENCE;EQUATIONS;INEQUALITIES;CALCULUS
Autoři
LIU, Z.; RADULESCU, V.; ZHANG, J.
Vydáno
20. 3. 2023
Nakladatel
Springer Nature
ISSN
0944-2669
Periodikum
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Ročník
62
Číslo
4
Stát
Spojené státy americké
Strany od
1
Strany do
31
Strany počet
URL
https://link.springer.com/article/10.1007/s00526-023-02463-0
Plný text v Digitální knihovně
http://hdl.handle.net/11012/213633
BibTex
@article{BUT183408, author="Zhisu {Liu} and Vicentiu {Radulescu} and Jianjun {Zhang}", title="A planar Schrodinger-Newton system with Trudinger-Moser critical growth", journal="CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS", year="2023", volume="62", number="4", pages="1--31", doi="10.1007/s00526-023-02463-0", issn="0944-2669", url="https://link.springer.com/article/10.1007/s00526-023-02463-0" }