Detail publikačního výsledku

Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems

PAPAGEORGIOU, N.; RADULESCU, V.; ZHANG, W.

Originální název

Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems

Anglický název

Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems

Druh

Článek WoS

Originální abstrakt

We consider a parametric problem driven by the p-Laplacian with Robin boundary condition. We assume that the reaction can change sign and we prove an existence and multiplicity theorem which is global with respect to the parameter (a bifurcation-type theorem).

Anglický abstrakt

We consider a parametric problem driven by the p-Laplacian with Robin boundary condition. We assume that the reaction can change sign and we prove an existence and multiplicity theorem which is global with respect to the parameter (a bifurcation-type theorem).

Klíčová slova

Nonlinear regularity;nonlinear maximum principle;strong comparison;bifurcation-type theorem;truncation

Klíčová slova v angličtině

Nonlinear regularity;nonlinear maximum principle;strong comparison;bifurcation-type theorem;truncation

Autoři

PAPAGEORGIOU, N.; RADULESCU, V.; ZHANG, W.

Rok RIV

2024

Vydáno

26.04.2023

ISSN

1422-6383

Periodikum

Results in Mathematics

Svazek

78(4)

Číslo

133

Stát

Švýcarská konfederace

Strany od

1

Strany do

17

Strany počet

17

URL

BibTex

@article{BUT183421,
  author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and Wen {Zhang}",
  title="Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems",
  journal="Results in Mathematics",
  year="2023",
  volume="78(4)",
  number="133",
  pages="1--17",
  doi="10.1007/s00025-023-01912-8",
  issn="1422-6383",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/"
}