Detail publikace
Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
GUAN, W. RADULESCU, V. WANG, D.
Originální název
Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We deal with the fractional Choquard equation where I-mu(x) is the Riesz potential, s is an element of (0, 1), 2s< N not equal 4s, 0 < mu < min{N, 4s} and 2* mu,s= 2N- mu/N-2s is the fractional critical Hardy-Littlewood-Sobolev exponent. By combining variational methods and the Brouwer degree theory, we investigate the existence and multiplicity of positive bound solutions to this equation when V(x) is a positive potential bounded from below. The results obtained in this paper extend and improve some recent works in the case where the coefficient V(x) vanishes at infinity.
Klíčová slova
GROUND-STATESPOSITIVE SOLUTION;SEXISTENCE;UNIQUENESS
Autoři
GUAN, W.; RADULESCU, V.; WANG, D.
Vydáno
15. 5. 2023
Nakladatel
Academic Press Inc.
ISSN
1090-2732
Periodikum
Journal of Differential Equations
Ročník
2023
Číslo
355
Stát
Spojené státy americké
Strany od
219
Strany do
247
Strany počet
29
URL
BibTex
@article{BUT183551,
author="Wen {Guan} and Vicentiu {Radulescu} and Da-Bin {Wang}",
title="Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent",
journal="Journal of Differential Equations",
year="2023",
volume="2023",
number="355",
pages="219--247",
doi="10.1016/j.jde.2023.01.023",
issn="1090-2732",
url="https://www.sciencedirect.com/science/article/pii/S002203962300030X"
}