Detail publikace

Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent

GUAN, W. RADULESCU, V. WANG, D.

Originální název

Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We deal with the fractional Choquard equation where I-mu(x) is the Riesz potential, s is an element of (0, 1), 2s< N not equal 4s, 0 < mu < min{N, 4s} and 2* mu,s= 2N- mu/N-2s is the fractional critical Hardy-Littlewood-Sobolev exponent. By combining variational methods and the Brouwer degree theory, we investigate the existence and multiplicity of positive bound solutions to this equation when V(x) is a positive potential bounded from below. The results obtained in this paper extend and improve some recent works in the case where the coefficient V(x) vanishes at infinity.

Klíčová slova

GROUND-STATESPOSITIVE SOLUTION;SEXISTENCE;UNIQUENESS

Autoři

GUAN, W.; RADULESCU, V.; WANG, D.

Vydáno

15. 5. 2023

Nakladatel

Academic Press Inc.

ISSN

1090-2732

Periodikum

Journal of Differential Equations

Ročník

2023

Číslo

355

Stát

Spojené státy americké

Strany od

219

Strany do

247

Strany počet

29

URL

BibTex

@article{BUT183551,
  author="Wen {Guan} and Vicentiu {Radulescu} and Da-Bin {Wang}",
  title="Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent",
  journal="Journal of Differential Equations",
  year="2023",
  volume="2023",
  number="355",
  pages="219--247",
  doi="10.1016/j.jde.2023.01.023",
  issn="1090-2732",
  url="https://www.sciencedirect.com/science/article/pii/S002203962300030X"
}