Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŘEHÁK, P.
Originální název
Superlinear solutions of sublinear fractional differential equations and regular variation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider a sublinear fractional equation of the order in the interval (1, 2). We give conditions guaranteeing that this equation possesses asymptotically superlinear solutions. We show that all of these solutions are regularly varying and establish precise asymptotic formulae for them. Further we prove non-improvability of the conditions. In addition to the asymptotically superlinear solutions we discuss also other classes of solutions, some of them having no ODE analogy. In the very special case, when the coefficient is asymptotically equivalent to a power function and the order of the equation is 2, we get known results in their full generality. We reveal substantial differences between the integer order and non-integer order case. Among other tools, we utilize the fractional Karamata integration theorem and the fractional generalized L'Hospital rule which are proved in the paper. Several examples illustrating our results but serving also in alternative proofs are given too. We provide also numerical simulations.
Klíčová slova
Sublinear fractional differential equation; Asymptotically superlinear solution; Regularly varying function; Karamata theorem; Asymptotic formula
Autoři
Vydáno
24. 4. 2023
Nakladatel
Springer Nature
Místo
LONDON
ISSN
1311-0454
Periodikum
Fractional Calculus and Applied Analysis
Ročník
26
Číslo
1
Stát
Bulharská republika
Strany od
989
Strany do
1015
Strany počet
27
URL
https://link.springer.com/article/10.1007/s13540-023-00156-1
Plný text v Digitální knihovně
http://hdl.handle.net/11012/213670
BibTex
@article{BUT183583, author="Pavel {Řehák}", title="Superlinear solutions of sublinear fractional differential equations and regular variation", journal="Fractional Calculus and Applied Analysis", year="2023", volume="26", number="1", pages="989--1015", doi="10.1007/s13540-023-00156-1", issn="1311-0454", url="https://link.springer.com/article/10.1007/s13540-023-00156-1" }