Detail publikace

Transitive quasi-uniform structures depending on a parameter

IRAGI, M., ŠLAPAL, J.

Originální název

Transitive quasi-uniform structures depending on a parameter

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In a category C with an (E,M)-factorization structure for morphisms, we prove that any subclass N of M which is closed under pullbacks determines a transitive quasi-uniform structure on C. In addition to providing a categorical characterization of all transitive quasiuniform structures compatible with a topology, this result also permits us to establish a number of Galois connections related to quasi-uniform structures on C. These Galois connections lead to the description of subcategories of C determined by quasi-uniform structures. Several examples considered at the end of the paper illustrate our results.

Klíčová slova

Closure operator, Quasi-uniform structure, Syntopogenous structure, Galois connection, Interior operator.

Autoři

IRAGI, M., ŠLAPAL, J.

Vydáno

10. 8. 2023

Nakladatel

Springer

Místo

Basel

ISSN

0001-9054

Periodikum

AEQUATIONES MATHEMATICAE

Ročník

97

Číslo

4

Stát

Švýcarská konfederace

Strany od

823

Strany do

836

Strany počet

14

URL

BibTex

@article{BUT183729,
  author="Josef {Šlapal} and Minani {Iragi}",
  title="Transitive quasi-uniform structures depending on a parameter",
  journal="AEQUATIONES MATHEMATICAE",
  year="2023",
  volume="97",
  number="4",
  pages="823--836",
  doi="10.1007/s00010-022-00937-8",
  issn="0001-9054",
  url="https://link.springer.com/article/10.1007/s00010-022-00937-8"
}