Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHRASTINOVÁ, V. TRYHUK, V.
Originální název
On the Lagrange variational problem
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We investigate the stationarity of variational integrals evaluated on solutions of a system of differential equations. First, the fundamental concepts are relieved of accidental structures and of hypothetical assumptions. The differential constraints, stationarity and the Euler-Lagrange equations related to Poincare-Cartan forms do not require any reference to coordinates or deep existence theorems for boundary value problems. Then, by using the jet formalism, the Lagrange multiplier rule is proved for all higher-order variational integrals and arbitrary compatible systems of differential equations. The self-contained exposition is based on the standard theory of differential forms and vector fields.
Klíčová slova
Lagrange variational problem; Lagrange multipliers; diffiety; Poincar?-Cartan form
Autoři
CHRASTINOVÁ, V.; TRYHUK, V.
Vydáno
15. 6. 2023
Nakladatel
Polish Academy of Sciences, Institute of Mathematics
Místo
Warszawa
ISSN
0066-2216
Periodikum
Annales Polon.Math.
Ročník
130
Číslo
2
Stát
Polská republika
Strany od
149
Strany do
180
Strany počet
32
URL
https://www.impan.pl/en/publishing-house/journals-and-series/annales-polonici-mathematici/all/130/2
BibTex
@article{BUT183920, author="Veronika {Chrastinová} and Václav {Tryhuk}", title="On the Lagrange variational problem", journal="Annales Polon.Math.", year="2023", volume="130", number="2", pages="149--180", doi="10.4064/ap220330-30-1", issn="0066-2216", url="https://www.impan.pl/en/publishing-house/journals-and-series/annales-polonici-mathematici/all/130/2" }