Detail publikace

On the Lagrange variational problem

CHRASTINOVÁ, V. TRYHUK, V.

Originální název

On the Lagrange variational problem

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We investigate the stationarity of variational integrals evaluated on solutions of a system of differential equations. First, the fundamental concepts are relieved of accidental structures and of hypothetical assumptions. The differential constraints, stationarity and the Euler-Lagrange equations related to Poincare-Cartan forms do not require any reference to coordinates or deep existence theorems for boundary value problems. Then, by using the jet formalism, the Lagrange multiplier rule is proved for all higher-order variational integrals and arbitrary compatible systems of differential equations. The self-contained exposition is based on the standard theory of differential forms and vector fields.

Klíčová slova

Lagrange variational problem; Lagrange multipliers; diffiety; Poincar?-Cartan form

Autoři

CHRASTINOVÁ, V.; TRYHUK, V.

Vydáno

15. 6. 2023

Nakladatel

Polish Academy of Sciences, Institute of Mathematics

Místo

Warszawa

ISSN

0066-2216

Periodikum

Annales Polon.Math.

Ročník

130

Číslo

2

Stát

Polská republika

Strany od

149

Strany do

180

Strany počet

32

URL

BibTex

@article{BUT183920,
  author="Veronika {Chrastinová} and Václav {Tryhuk}",
  title="On the Lagrange variational problem",
  journal="Annales Polon.Math.",
  year="2023",
  volume="130",
  number="2",
  pages="149--180",
  doi="10.4064/ap220330-30-1",
  issn="0066-2216",
  url="https://www.impan.pl/en/publishing-house/journals-and-series/annales-polonici-mathematici/all/130/2"
}