Detail publikace
An inverse problem for a double phase implicit obstacle problem with multivalued terms
RADULESCU, V. ZENG, S. BAI, Y. WINKERT, P.
Originální název
An inverse problem for a double phase implicit obstacle problem with multivalued terms
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we study an inverse problem of estimating three discontinuous parameters in a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which is formulated by a regularized optimal control problem. Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map which admits weakly compact values. Then, by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new existence theorem is provided.
Klíčová slova
Clarke subdifferential;discontinuous parameter;double phase operator;implicit obstacle problem;inverse problem;optimal control;Steklov eigenvalue
Autoři
RADULESCU, V.; ZENG, S.; BAI, Y.; WINKERT, P.
Vydáno
27. 4. 2023
ISSN
1262-3377
Periodikum
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS
Ročník
29
Číslo
30
Stát
Francouzská republika
Strany od
1
Strany do
30
Strany počet
30
URL
Plný text v Digitální knihovně
BibTex
@article{BUT183936,
author="Shengda {Zeng} and Yunru {Bai} and Vicentiu {Radulescu} and Patrick {Winkert}",
title="An inverse problem for a double phase implicit obstacle problem with multivalued terms",
journal="ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS",
year="2023",
volume="29",
number="30",
pages="1--30",
doi="10.1051/cocv/2023022",
issn="1262-3377",
url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:000977790200001"
}