Detail publikace

An inverse problem for a double phase implicit obstacle problem with multivalued terms

RADULESCU, V. ZENG, S. BAI, Y. WINKERT, P.

Originální název

An inverse problem for a double phase implicit obstacle problem with multivalued terms

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we study an inverse problem of estimating three discontinuous parameters in a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which is formulated by a regularized optimal control problem. Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map which admits weakly compact values. Then, by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new existence theorem is provided.

Klíčová slova

Clarke subdifferential;discontinuous parameter;double phase operator;implicit obstacle problem;inverse problem;optimal control;Steklov eigenvalue

Autoři

RADULESCU, V.; ZENG, S.; BAI, Y.; WINKERT, P.

Vydáno

27. 4. 2023

ISSN

1262-3377

Periodikum

ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS

Ročník

29

Číslo

30

Stát

Francouzská republika

Strany od

1

Strany do

30

Strany počet

30

URL

Plný text v Digitální knihovně

BibTex

@article{BUT183936,
  author="Shengda {Zeng} and Yunru {Bai} and Vicentiu {Radulescu} and Patrick {Winkert}",
  title="An inverse problem for a double phase implicit obstacle problem with multivalued terms",
  journal="ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS",
  year="2023",
  volume="29",
  number="30",
  pages="1--30",
  doi="10.1051/cocv/2023022",
  issn="1262-3377",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:000977790200001"
}