Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CAI, L. PAPAGEORGIOU, N. RADULESCU, V.
Originální název
Multiple and Nodal Solutions for Parametric Dirichlet Equations Driven by the Double Phase Differential Operator
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider a nonlinear parametric Dirichlet problem driven by the double phase differential operator. Using variational tools combined with critical groups, we show that for all small values of the parameter, the problem has at least three nontrivial bounded solutions which are ordered and we provide the sign information for all of them. Two solutions are of constant sign and the third one is nodal. Finally, we determine the asymptotic behavior of the nodal solution as the parameter converges to zero.
Klíčová slova
Double phase differential operator;Extremal constant sign solutions;Critical groups;Generalized Orlicz spaces
Autoři
CAI, L.; PAPAGEORGIOU, N.; RADULESCU, V.
Vydáno
4. 7. 2023
Nakladatel
Springer Nature
ISSN
1661-8262
Periodikum
Complex Analysis and Operator Theory
Ročník
17
Číslo
5
Stát
Švýcarská konfederace
Strany od
1
Strany do
28
Strany počet
URL
https://link.springer.com/article/10.1007/s11785-023-01379-z
Plný text v Digitální knihovně
http://hdl.handle.net/11012/244986
BibTex
@article{BUT184000, author="Li {Cai} and Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu}", title="Multiple and Nodal Solutions for Parametric Dirichlet Equations Driven by the Double Phase Differential Operator", journal="Complex Analysis and Operator Theory", year="2023", volume="17", number="5", pages="1--28", doi="10.1007/s11785-023-01379-z", issn="1661-8262", url="https://link.springer.com/article/10.1007/s11785-023-01379-z" }