Detail publikace

Multiple and Nodal Solutions for Parametric Dirichlet Equations Driven by the Double Phase Differential Operator

CAI, L. PAPAGEORGIOU, N. RADULESCU, V.

Originální název

Multiple and Nodal Solutions for Parametric Dirichlet Equations Driven by the Double Phase Differential Operator

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We consider a nonlinear parametric Dirichlet problem driven by the double phase differential operator. Using variational tools combined with critical groups, we show that for all small values of the parameter, the problem has at least three nontrivial bounded solutions which are ordered and we provide the sign information for all of them. Two solutions are of constant sign and the third one is nodal. Finally, we determine the asymptotic behavior of the nodal solution as the parameter converges to zero.

Klíčová slova

Double phase differential operator;Extremal constant sign solutions;Critical groups;Generalized Orlicz spaces

Autoři

CAI, L.; PAPAGEORGIOU, N.; RADULESCU, V.

Vydáno

4. 7. 2023

Nakladatel

Springer Nature

ISSN

1661-8262

Periodikum

Complex Analysis and Operator Theory

Ročník

17

Číslo

5

Stát

Švýcarská konfederace

Strany od

1

Strany do

28

Strany počet

28

URL

Plný text v Digitální knihovně

BibTex

@article{BUT184000,
  author="Li {Cai} and Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu}",
  title="Multiple and Nodal Solutions for Parametric Dirichlet Equations Driven by the Double Phase Differential Operator",
  journal="Complex Analysis and Operator Theory",
  year="2023",
  volume="17",
  number="5",
  pages="1--28",
  doi="10.1007/s11785-023-01379-z",
  issn="1661-8262",
  url="https://link.springer.com/article/10.1007/s11785-023-01379-z"
}