Detail publikace

Infinitely many smooth nodal solutions for Orlicz Robin problems

BAHROUNI, A. MISSAOUI, H. RADULESCU, V.

Originální název

Infinitely many smooth nodal solutions for Orlicz Robin problems

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this note, we study a Robin problem driven by the Orlicz g-Laplace operator. In particular, by using a regularity result and Kajikiya's theorem, we prove that the problem has a whole sequence of distinct smooth nodal solutions converging to the trivial one. The analysis is developed in the most general abstract setting that corresponds to Orlicz-Sobolev function spaces.

Klíčová slova

Nodal solutions;Orlicz-Sobolev spaces;Robin boundary value;Regularity

Autoři

BAHROUNI, A.; MISSAOUI, H.; RADULESCU, V.

Vydáno

17. 8. 2023

Nakladatel

Elsevier

ISSN

1873-5452

Periodikum

APPLIED MATHEMATICS LETTERS

Ročník

142

Číslo

1

Stát

Spojené státy americké

Strany od

1

Strany do

7

Strany počet

7

URL

Plný text v Digitální knihovně

BibTex

@article{BUT184003,
  author="Anouar {Bahrouni} and Hlel {Missaoui} and Vicentiu {Radulescu}",
  title="Infinitely many smooth nodal solutions for Orlicz Robin problems",
  journal="APPLIED MATHEMATICS LETTERS",
  year="2023",
  volume="142",
  number="1",
  pages="1--7",
  doi="10.1016/j.aml.2023.108635",
  issn="1873-5452",
  url="https://www.sciencedirect.com/science/article/pii/S0893965923000678"
}