Detail publikace
Double phase implicit obstacle problems with convection term and multivalued operator
ZENG, S. BAI, Y. PAPAGEORGIOU, N. RADULESCU, V.
Originální název
Double phase implicit obstacle problems with convection term and multivalued operator
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper is devoted to studying a complicated implicit obstacle problem involving a nonhomogenous differential operator, called double phase operator, a nonlinear convection term (i.e. a reaction term depending on the gradient), and a multivalued term which is described by Clarke's generalized gradient. We develop a general framework to deliver an existence result for the double phase implicit obstacle problem under consideration. Our proof is based on the Kakutani-Ky Fan fixed point theorem together with the theory of nonsmooth analysis and a surjectivity theorem for multivalued mappings generated by the sum of a maximal monotone multivalued operator and a bounded pseudomonotone mapping.
Klíčová slova
Double phase problem;implicit obstacle problem;Clarke's generalized gradient;Kakutani-Ky Fan fixed point theorem;surjectivity theorem;existence of solution
Autoři
ZENG, S.; BAI, Y.; PAPAGEORGIOU, N.; RADULESCU, V.
Vydáno
12. 7. 2023
ISSN
1793-6861
Periodikum
Analysis and Applications
Ročník
21
Číslo
4
Stát
Singapurská republika
Strany od
1013
Strany do
1038
Strany počet
26
URL
BibTex
@article{BUT184004,
author="Shengda {Zeng} and Yunru {Bai} and Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu}",
title="Double phase implicit obstacle problems with convection term and multivalued operator",
journal="Analysis and Applications",
year="2023",
volume="21",
number="4",
pages="1013--1038",
doi="10.1142/S0219530523500033",
issn="1793-6861",
url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:000944369600001"
}