Detail publikace

Double phase implicit obstacle problems with convection term and multivalued operator

ZENG, S. BAI, Y. PAPAGEORGIOU, N. RADULESCU, V.

Originální název

Double phase implicit obstacle problems with convection term and multivalued operator

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This paper is devoted to studying a complicated implicit obstacle problem involving a nonhomogenous differential operator, called double phase operator, a nonlinear convection term (i.e. a reaction term depending on the gradient), and a multivalued term which is described by Clarke's generalized gradient. We develop a general framework to deliver an existence result for the double phase implicit obstacle problem under consideration. Our proof is based on the Kakutani-Ky Fan fixed point theorem together with the theory of nonsmooth analysis and a surjectivity theorem for multivalued mappings generated by the sum of a maximal monotone multivalued operator and a bounded pseudomonotone mapping.

Klíčová slova

Double phase problem;implicit obstacle problem;Clarke's generalized gradient;Kakutani-Ky Fan fixed point theorem;surjectivity theorem;existence of solution

Autoři

ZENG, S.; BAI, Y.; PAPAGEORGIOU, N.; RADULESCU, V.

Vydáno

12. 7. 2023

ISSN

1793-6861

Periodikum

Analysis and Applications

Ročník

21

Číslo

4

Stát

Singapurská republika

Strany od

1013

Strany do

1038

Strany počet

26

URL

BibTex

@article{BUT184004,
  author="Shengda {Zeng} and Yunru {Bai} and Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu}",
  title="Double phase implicit obstacle problems with convection term and multivalued operator",
  journal="Analysis and Applications",
  year="2023",
  volume="21",
  number="4",
  pages="1013--1038",
  doi="10.1142/S0219530523500033",
  issn="1793-6861",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:000944369600001"
}