Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NGUYEN, T. RADULESCU, V.
Originální název
Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we consider the Schrodinger equation involving the fractional $(p, p_1, . . . , p_m)$-Laplacian as follows $(-Delta)_p^s u +\sum_ {i=1}^m (-\Delta)_{p_i}^s u + V(\epsilon x)(|u|^{(N-2s)/2s} u + sum_{i=1}^m |u|^{p_i-2} u) = f (u) \in R^N$ where $\epsilon$ is a positive parameter, $N=ps, s \in (0,1), 2 \leq p < p_1 < \dots < p_m < +\infty, m \geq 1$. The nonlinear function f has the exponential growth and potential function V is continuous function satisfying some suitable conditions. Using the penalization method and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge, it is the first time that the above problem is studied.
Klíčová slova
MOSER-TRUDINGER INEQUALITY;SOBOLEV-SLOBODECKIJ SPACES;POSITIVE SOLUTIONS;ELLIPTIC-EQUATIONS;EXISTENCE;DIMENSION;SYSTEMS;STATES
Autoři
NGUYEN, T.; RADULESCU, V.
Vydáno
25. 1. 2023
ISSN
0025-2611
Periodikum
MANUSCRIPTA MATHEMATICA
Ročník
173
Číslo
1-2
Stát
Spolková republika Německo
Strany od
499
Strany do
554
Strany počet
56
URL
https://link.springer.com/article/10.1007/s00229-022-01450-7
BibTex
@article{BUT184005, author="Thin Van {Nguyen} and Vicentiu {Radulescu}", title="Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth", journal="MANUSCRIPTA MATHEMATICA", year="2023", volume="173", number="1-2", pages="499--554", doi="10.1007/s00229-022-01450-7", issn="0025-2611", url="https://link.springer.com/article/10.1007/s00229-022-01450-7" }