Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ROSECKÝ, M. PLUSKAL, J. ŠOMPLÁK, R.
Originální název
Network Flow Problem Heuristic Reduction Using Machine Learning
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Most of the supporting tools developed for logistic optimization and processing infrastructure planning are based on the network flow problem. The real-world application of these instruments can provide great insight and help to ensure long-term sustainability. The main limitation of these tools lies in great computing demand when there is the necessity of solving large-scale tasks in great detail. It means that the ability to find the optimal solution for real-world problems is limited. Thus, the detail of infrastructure is often reduced by data aggregation or heuristic approaches are used to find a suboptimal solution. This paper proposes a machine learning classification model to reduce the number of variables for an exact solution algorithm. First, the design of experiments is used to create a set of smaller problems that are possible to solve exactly. Artificial data are used at this stage, while domain knowledge is used to set appropriate distribution and parameters. Second, the classification model estimates the probability of the presence of each arc in the optimal solution. Features, which are related to costs and capacity, of each arc are utilized in the classification model. Models created on a subset of generated problems are then tested on the other problems. Finally, the proposed framework is applied to the waste management problem in the Czech Republic. The results of the verification show, that it is possible to remove 95 % of arcs without impact on strategic decisions and without significant change of an objective function. The computing time of the reduced problem takes only 7 % of the original task.
Klíčová slova
Model-size reduction techniques; Classification model; Arcs removal; Waste-to-Energy localization; Large-scale optimization
Autoři
ROSECKÝ, M.; PLUSKAL, J.; ŠOMPLÁK, R.
Vydáno
23. 9. 2023
Nakladatel
Springer Nature
Místo
DORDRECHT
ISSN
1389-4420
Periodikum
OPTIMIZATION AND ENGINEERING
Ročník
25
Číslo
1
Stát
Švýcarská konfederace
Strany od
93
Strany do
119
Strany počet
27
URL
https://link.springer.com/article/10.1007/s11081-023-09838-4
Plný text v Digitální knihovně
http://hdl.handle.net/11012/214428
BibTex
@article{BUT184474, author="Martin {Rosecký} and Jaroslav {Pluskal} and Radovan {Šomplák}", title="Network Flow Problem Heuristic Reduction Using Machine Learning", journal="OPTIMIZATION AND ENGINEERING", year="2023", volume="25", number="1", pages="27", doi="10.1007/s11081-023-09838-4", issn="1389-4420", url="https://link.springer.com/article/10.1007/s11081-023-09838-4" }