Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SKOVAJSA, Š.
Originální název
Review of clustering methods used in data-driven housing market segmentation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
There was already a huge effort spent to prove the existence of housing market segments, how to utilize them to improve valuation accuracy, and gain knowledge about the inner structure of the whole superior housing market. Accordingly, many different methods on the topic were explored, but there is still no universal framework known. The aim of this article is to review some previous studies on data-driven housing market segmentation methods with a focus on clustering methods and their ability to capture market segments with respect to the shape of clusters, fuzziness, and hierarchical structure.
Klíčová slova
clustering algorithms; housing market analysis; housing market segmentation; data-driven segmentation
Autoři
Vydáno
8. 9. 2023
Nakladatel
Polish Real Estate Scientific Society
ISSN
1733-2478
Periodikum
Real Estate Management and Valuation
Ročník
31
Číslo
3
Stát
Polská republika
Strany od
66
Strany do
74
Strany počet
8
URL
https://www.remv-journal.com/Review-of-clustering-methods-used-in-data-driven-housing-market-segmentation,162812,0,2.html
Plný text v Digitální knihovně
http://hdl.handle.net/11012/214454
BibTex
@article{BUT184573, author="Štěpán {Skovajsa}", title="Review of clustering methods used in data-driven housing market segmentation", journal="Real Estate Management and Valuation", year="2023", volume="31", number="3", pages="66--74", doi="10.2478/remav-2023-0022 ", issn="1733-2478", url="https://www.remv-journal.com/Review-of-clustering-methods-used-in-data-driven-housing-market-segmentation,162812,0,2.html" }