Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SUKEI, E. DE LEON MARTINEZ, S. OLMOS, M. ARTES, A.
Originální název
Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment (EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. However, defining robust models is challenging due to the data's noisy and frequently missing observations. This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, we addressed the missing observation problem by utilising hidden Markov models and the possibility of including information from unlabelled samples via transfer learning. We validated our approach using two wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety severity accurately based on GAD-7 scores.
Klíčová slova
In-situ patient monitoring, Digital phenotyping, Ecological momentary, Assessment, Time-series modelling, Attention models, Transfer learning
Autoři
SUKEI, E.; DE LEON MARTINEZ, S.; OLMOS, M.; ARTES, A.
Vydáno
8. 8. 2023
ISSN
2214-7829
Periodikum
Internet Interventions
Ročník
33
Číslo
100657
Stát
Nizozemsko
Strany od
1
Strany do
9
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S221478292300057X
BibTex
@article{BUT184781, author="SUKEI, E. and DE LEON MARTINEZ, S. and OLMOS, M. and ARTES, A.", title="Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation", journal="Internet Interventions", year="2023", volume="33", number="100657", pages="1--9", doi="10.1016/j.invent.2023.100657", issn="2214-7829", url="https://www.sciencedirect.com/science/article/pii/S221478292300057X" }