Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
POLÁŠEK, T. ČADÍK, M. KELLER, Y. BENEŠ, B.
Originální název
Vision UFormer: Long-Range Monocular Absolute Depth Estimation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We introduce Vision UFormer (ViUT), a novel deep neural long-range monocular depth estimator. The input is an RGB image, and the output is an image that stores the absolute distance of the object in the scene as its per-pixel values. ViUT consists of a Transformer encoder and a ResNet decoder combined with UNet style of skip connections. It is trained on 1M images across ten datasets in a staged regime that starts with easier-to-predict data such as indoor photographs and continues to more complex long-range outdoor scenes. We show that ViUT provides comparable results for normalized relative distances and short-range classical datasets such as NYUv2 and KITTI. We further show that it successfully estimates of absolute long-range depth in meters. We validate ViUT on a wide variety of long-range scenes showing its high estimation capabilities with a relative improvement of up to 23%. Absolute depth estimation finds application in many areas, and we show its usability in image composition, range annotation, defocus, and scene reconstruction.
Klíčová slova
Absolute Depth Estimation, Monocular Depth Prediction, Long Range Distance, Transformer, UNet, Staged Training
Autoři
POLÁŠEK, T.; ČADÍK, M.; KELLER, Y.; BENEŠ, B.
Vydáno
26. 2. 2023
Nakladatel
Elsevier
Místo
Oxford
ISSN
0097-8493
Periodikum
COMPUTERS & GRAPHICS-UK
Ročník
111
Číslo
4
Stát
Spojené království Velké Británie a Severního Irska
Strany od
180
Strany do
189
Strany počet
10
URL
https://www.sciencedirect.com/science/article/pii/S0097849323000262
BibTex
@article{BUT185048, author="Tomáš {Polášek} and Martin {Čadík} and Yosi {Keller} and Bedřich {Beneš}", title="Vision UFormer: Long-Range Monocular Absolute Depth Estimation", journal="COMPUTERS & GRAPHICS-UK", year="2023", volume="111", number="4", pages="180--189", doi="10.1016/j.cag.2023.02.003", issn="0097-8493", url="https://www.sciencedirect.com/science/article/pii/S0097849323000262" }