Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VÁŽANOVÁ, G.
Originální název
Solutions of an advance-delay differential equation and their asymptotic behaviour
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper considers a scalar differential equation of an advance-delay type \begin{equation*} \dot{y}(t)= -\left(a_0+\frac{a_1}{t}\right)y(t-\tau )+\left(b_0+\frac{b_1}{t}\right)y(t+\sigma )\,, \end{equation*} where constants $a_0$, $b_0$, $\tau $ and $\sigma $ are positive, and $a_1$ and $b_1$ are arbitrary. The behavior of its solutions for $t\rightarrow \infty $ is analyzed provided that the transcendental equation \begin{equation*} \lambda = -a_0\mathrm{e}^{-\lambda \tau }+b_0\mathrm{e}^{\lambda \sigma } \end{equation*} has a positive real root. An exponential-type function approximating the solution is searched for to be used in proving the existence of a semi-global solution. Moreover, the lower and upper estimates are given for such a solution.
Klíčová slova
advance-delay differential equation; mixed-type differential equation; asymptotic behaviour; existence of solutions
Autoři
Vydáno
28. 2. 2023
Místo
Brno
ISSN
1212-5059
Periodikum
Archivum Mathematicum
Ročník
59
Číslo
1
Stát
Česká republika
Strany od
141
Strany do
149
Strany počet
9
URL
https://dml.cz/handle/10338.dmlcz/151559
BibTex
@article{BUT185052, author="Gabriela {Vážanová}", title="Solutions of an advance-delay differential equation and their asymptotic behaviour", journal="Archivum Mathematicum", year="2023", volume="59", number="1", pages="141--149", doi="10.5817/AM2023-1-141", issn="1212-5059", url="https://dml.cz/handle/10338.dmlcz/151559" }