Detail publikace
Extracting speaker and emotion information from self-supervised speech models via channel-wise correlations
STAFYLAKIS, T. MOŠNER, L. KAKOUROS, S. PLCHOT, O. BURGET, L. ČERNOCKÝ, J.
Originální název
Extracting speaker and emotion information from self-supervised speech models via channel-wise correlations
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Self-supervised learning of speech representations from large amounts of unlabeled data has enabled state-of-the-art results in several speech processing tasks. Aggregating these speech representations across time is typically approached by using descriptive statistics, and in particular, using the first- and second-order statistics of representation coefficients. In this paper, we examine an alternative way of extracting speaker and emotion information from self-supervised trained models, based on the correlations between the coefficients of the representations - correlation pooling. We show improvements over mean pooling and further gains when the pooling methods are combined via fusion. The code is available at github.com/Lamomal/s3prl_correlation.
Klíčová slova
Speaker identification, speaker verification, emotion recognition, self-supervised models
Autoři
STAFYLAKIS, T.; MOŠNER, L.; KAKOUROS, S.; PLCHOT, O.; BURGET, L.; ČERNOCKÝ, J.
Vydáno
9. 1. 2023
Nakladatel
IEEE Signal Processing Society
Místo
Doha
ISBN
978-1-6654-7189-3
Kniha
2022 IEEE Spoken Language Technology Workshop, SLT 2022 - Proceedings
Strany od
1136
Strany do
1143
Strany počet
8
URL
BibTex
@inproceedings{BUT185160,
author="STAFYLAKIS, T. and MOŠNER, L. and KAKOUROS, S. and PLCHOT, O. and BURGET, L. and ČERNOCKÝ, J.",
title="Extracting speaker and emotion information from self-supervised speech models via channel-wise correlations",
booktitle="2022 IEEE Spoken Language Technology Workshop, SLT 2022 - Proceedings",
year="2023",
pages="1136--1143",
publisher="IEEE Signal Processing Society",
address="Doha",
doi="10.1109/SLT54892.2023.10023345",
isbn="978-1-6654-7189-3",
url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10023345"
}
Dokumenty