Detail publikace
Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach
NOVÁK, J. CHUDÝ, P.
Originální název
Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Dynamic soaring refers to a flight technique used primarily by large seabirds to extract energy from the wind shear layers formed above ocean surface. A small Unmanned Aerial Vehicle (UAV) capable of efficient dynamic soaring maneuvers can enable long endurance missions in context of patrol or increased flight range. To realize autonomous energy-saving patterns by a UAV, a real-time trajectory generation for a dynamic soaring maneuver accounting for varying external conditions has to be performed. The design of the flight trajectory is formulated as an Optimal Control Problem (OCP) and solved within direct collocation based optimization. A surrogate model of the optimal traveling cycle capturing wind profile uncertainties is constructed using Polynomial Chaos Expansion (PCE). The unknown wind profile parameters are estimated from observed trajectory by means of a Genetic Algorithm (GA). The PCE surrogate model is subsequently utilized to update the optimal trajectory using the estimated wind profile parameters.
Klíčová slova
Polynomial Chaos Expansion, Surrogate Modeling, Dynamic Soaring, Optimal Control
Autoři
NOVÁK, J.; CHUDÝ, P.
Vydáno
16. 2. 2024
Nakladatel
Springer Nature Switzerland AG
Místo
Grasmere
ISBN
978-3-031-53968-8
Kniha
Machine Learning, Optimization, and Data Science
Edice
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Číslo
14505
Stát
Spolková republika Německo
Strany od
104
Strany do
115
Strany počet
11
BibTex
@inproceedings{BUT185184,
author="Jiří {Novák} and Peter {Chudý}",
title="Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach",
booktitle="Machine Learning, Optimization, and Data Science",
year="2024",
series="Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
journal="Lecture Notes in Computer Science",
number="14505",
pages="104--115",
publisher="Springer Nature Switzerland AG",
address="Grasmere",
doi="10.1007/978-3-031-53969-5\{_}9",
isbn="978-3-031-53968-8",
issn="0302-9743"
}