Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LANDINI, F. DIEZ SÁNCHEZ, M. LOZANO DÍEZ, A. BURGET, L.
Originální název
Multi-Speaker and Wide-Band Simulated Conversations as Training Data for End-to-End Neural Diarization
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
End-to-end diarization presents an attractive alternative to standard cascaded diarization systems because a single system can handle all aspects of the task at once. Many flavors of end-to-end models have been proposed but all of them require (so far non-existing) large amounts of annotated data for training. The compromise solution consists in generating synthetic data and the recently proposed simulated conversations (SC) have shown remarkable improvements over the original simulated mixtures (SM). In this work, we create SC with multiple speakers per conversation and show that they allow for substantially better performance than SM, also reducing the dependence on a fine-tuning stage. We also create SC with wide-band public audio sources and present an analysis on several evaluation sets. Together with this publication, we release the recipes for generating such data and models trained on public sets as well as the implementation to efficiently handle multiple speakers per conversation and an auxiliary voice activity detection loss.
Klíčová slova
Speaker diarization, end-to-end neural diarization, simulated conversations
Autoři
LANDINI, F.; DIEZ SÁNCHEZ, M.; LOZANO DÍEZ, A.; BURGET, L.
Vydáno
4. 6. 2023
Nakladatel
IEEE Signal Processing Society
Místo
Rhodes Island
ISBN
978-1-7281-6327-7
Kniha
Proceedings of ICASSP 2023
Strany od
1
Strany do
5
Strany počet
URL
https://ieeexplore.ieee.org/document/10097049
BibTex
@inproceedings{BUT185197, author="Federico Nicolás {Landini} and Mireia {Diez Sánchez} and Alicia {Lozano Díez} and Lukáš {Burget}", title="Multi-Speaker and Wide-Band Simulated Conversations as Training Data for End-to-End Neural Diarization", booktitle="Proceedings of ICASSP 2023", year="2023", pages="1--5", publisher="IEEE Signal Processing Society", address="Rhodes Island", doi="10.1109/ICASSP49357.2023.10097049", isbn="978-1-7281-6327-7", url="https://ieeexplore.ieee.org/document/10097049" }
Dokumenty
landini_icassp2023_10097049.pdf