Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PIJÁČKOVÁ, K. NEJEDLÝ, P. KŘEMEN, V. PLEŠINGER, F. MÍVALT, F. LEPKOVÁ, K. PAIL, M. JURÁK, P. WORRELL, G. BRÁZDIL, M. KLIMEŠ, P.
Originální název
Genetic algorithm designed for optimization of neural network architectures for intracranial EEG recordings analysis
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Objective. The current practices of designing neural networks rely heavily on subjective judgment and heuristic steps, often dictated by the level of expertise possessed by architecture designers. To alleviate these challenges and streamline the design process, we propose an automatic method, a novel approach to enhance the optimization of neural network architectures for processing intracranial electroencephalogram (iEEG) data. Approach. We present a genetic algorithm, which optimizes neural network architecture and signal pre-processing parameters for iEEG classification. Main results. Our method improved the macro F1 score of the state-of-the-art model in two independent datasets, from St. Anne's University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, MN, USA), from 0.9076 to 0.9673 and from 0.9222 to 0.9400 respectively. Significance. By incorporating principles of evolutionary optimization, our approach reduces the reliance on human intuition and empirical guesswork in architecture design, thus promoting more efficient and effective neural network models. The proposed method achieved significantly improved results when compared to the state-of-the-art benchmark model (McNemar's test, p MUCH LESS-THAN 0.01). The results indicate that neural network architectures designed through machine-based optimization outperform those crafted using the subjective heuristic approach of a human expert. Furthermore, we show that well-designed data preprocessing significantly affects the models' performance.
Klíčová slova
intracranial EEG; genetic algorithms; optimization; neural network; deep learning
Autoři
PIJÁČKOVÁ, K.; NEJEDLÝ, P.; KŘEMEN, V.; PLEŠINGER, F.; MÍVALT, F.; LEPKOVÁ, K.; PAIL, M.; JURÁK, P.; WORRELL, G.; BRÁZDIL, M.; KLIMEŠ, P.
Vydáno
16. 6. 2023
Nakladatel
IOP Publishing
Místo
BRISTOL
ISSN
1741-2560
Periodikum
J NEURAL ENG
Ročník
20
Číslo
3
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1
Strany do
11
Strany počet
URL
https://iopscience.iop.org/article/10.1088/1741-2552/acdc54
Plný text v Digitální knihovně
http://hdl.handle.net/11012/244967
BibTex
@article{BUT185287, author="Kristýna {Pijáčková} and Petr {Nejedlý} and Václav {Křemen} and Filip {Plešinger} and Filip {Mívalt} and Kamila {Lepková} and Martin {Pail} and Pavel {Jurák} and Gregory {Worrell} and Milan {Brázdil} and Petr {Klimeš}", title="Genetic algorithm designed for optimization of neural network architectures for intracranial EEG recordings analysis", journal="J NEURAL ENG", year="2023", volume="20", number="3", pages="1--11", doi="10.1088/1741-2552/acdc54", issn="1741-2560", url="https://iopscience.iop.org/article/10.1088/1741-2552/acdc54" }