Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HEJČ, J. ŘEDINA, R. POSPÍŠIL, D. RAKOVÁ, I. KOLÁŘOVÁ, J. STÁREK, Z.
Originální název
Weakly Supervised P Wave Segmentation in Pathological Electrocardiogram Signals Using Deep Multiple-instance Learning
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Detection of obscured P waves remains a largely unexplored topic. This study proposes a weakly supervised learning approach for P wave feature embedding by leveraging surrogate labels and 3265 eight-lead electrocardiographic (ECG) signals with diverse cardiac rhythms, including supraventricular tachycardias, atrial fibrillation, and paced rhythms. The proposed method employs a temporal convolutional neural network and multiple instance learning to learn pyramidal feature embeddings that estimate both labeled and unlabeled instances of the P wave. The fine-tuned model achieved a temporally aggregated Dice score of 81.1%, outperforming the baseline model by 1.0%. On the subset with sinus rhythms and minor rhythm irregularities, the model consistently achieved recall and precision of around 84–85% for P wave onset and offset. The framework can be used to learn embeddings correlated with the distribution of the atrial depolarization, using only a fraction of labeled samples. Surrogate labels allow us to embed more detailed context, which may enhance the performance and interpretability of deep neural networks in downstream tasks in the future.
Klíčová slova
P Wave Detection, Weakly Supervised Learning, Atrial Fibrillation, Supraventricular Tachycardias, Rhythm Irregularities, Deep Neural Networks, Temporal Convolutional Neural Network
Autoři
HEJČ, J.; ŘEDINA, R.; POSPÍŠIL, D.; RAKOVÁ, I.; KOLÁŘOVÁ, J.; STÁREK, Z.
Vydáno
20. 11. 2023
Nakladatel
IEEE Computer Society
Místo
Atlanta
ISSN
2325-887X
Periodikum
Computing in Cardiology
Ročník
50
Číslo
neuvedeno
Stát
Spojené státy americké
Strany od
1
Strany do
4
Strany počet
URL
https://cinc.org/archives/2023/pdf/CinC2023-321.pdf
BibTex
@inproceedings{BUT185375, author="Jakub {Hejč} and Richard {Ředina} and David {Pospíšil} and Ivana {Raková} and Jana {Kolářová} and Zdeněk {Stárek}", title="Weakly Supervised P Wave Segmentation in Pathological Electrocardiogram Signals Using Deep Multiple-instance Learning", booktitle="Computing in Cardiology 2023", year="2023", series="50", journal="Computing in Cardiology", volume="50", number="neuvedeno", pages="1--4", publisher="IEEE Computer Society", address="Atlanta", doi="10.22489/CinC.2023.321", issn="2325-887X", url="https://cinc.org/archives/2023/pdf/CinC2023-321.pdf" }